ﻻ يوجد ملخص باللغة العربية
We present results from NuSTAR and XMM-Newton observations of the new black hole X-ray binary MAXI J1820+070 at low accretion rates (below 1% of the Eddington luminosity). We detect a narrow Fe K$alpha$ emission line, in contrast to the broad and asymmetric Fe K$alpha$ line profiles commonly present in black hole binaries at high accretion rates. The narrow line, with weak relativistic broadening, indicates that the Fe K$alpha$ line is produced at a large disk radius. Fitting with disk reflection models assuming standard disk emissivity finds a large disk truncation radius (a few tens to a few hundreds of gravitational radii, depending on the disk inclination). In addition, we detect a quasi-periodic oscillation (QPO) varying in frequency between $11.6pm0.2$~mHz and $2.8pm0.1$~mHz. The very low QPO frequencies suggest a large size for the optically-thin Comptonization region according to the Lense-Thirring precession model, supporting that the accretion disk recedes from the ISCO and is replaced by advection-dominated accretion flow at low accretion rates. We also discuss the possibility of an alternative accretion geometry that the narrow Fe K$alpha$ line is produced by a lamppost corona with a large height illuminating the disk.
The geometry of the inner accretion flow in the hard and hard-intermediate states of X-ray binaries remains controversial. Using NICER observations of the black hole X-ray binary MAXI J1820+070 during the rising phase of its 2018 outburst, we study t
We study X-ray spectra from the outburst rise of the accreting black-hole binary MAXI J1820+070. We find that models having the disk inclinations within those of either the binary or the jet imply significant changes of the accretion disk inner radiu
MAXI J1820+070 is a newly-discovered black hole X-ray binary, whose dynamical parameters, namely the black hole mass, the inclination angle and the source distance, have been estimated recently. emph{Insight}-HXMT have observed its entire outburst fr
We present intermediate resolution spectroscopy of the optical counterpart to the black hole X-ray transient MAXI J1820+070 (=ASASSN-18ey) obtained with the OSIRIS spectrograph on the 10.4-m Gran Telescopio Canarias. The observations were performed w
We study the jet in the hard state of the accreting black-hole binary MAXI J1820+070. From the available radio-to-optical spectral and variability data, we put strong constraints on the jet parameters. We find while it is not possible to uniquely det