ﻻ يوجد ملخص باللغة العربية
We study supersymmetric Wilson loops from a geometrical perspective. To this end, we propose a new formulation of these operators in terms of an integral form associated to the immersion of the loop into a supermanifold. This approach provides a unifying description of Wilson loops preserving different sets of supercharges, and clarifies the flow between them. Moreover, it allows to exploit the powerful techniques of super-differential calculus for investigating their symmetries. As remarkable examples, we discuss supersymmetry and kappa-symmetry invariance.
We study a general class of supersymmetric Wilson loops operator in N = 4 super Yang-Mills theory, obtained as orbits of conformal transformations. These loops are the natural generalization of the familiar circular Wilson-Maldacena operator and thei
We study the dual gravity description of supersymmetric Wilson loops whose expectation value is unity. They are described by calibrated surfaces that end on the boundary of anti de-Sitter space and are pseudo-holomorphic with respect to an almost com
We present two new families of Wilson loop operators in N= 6 supersymmetric Chern-Simons theory. The first one is defined for an arbitrary contour on the three dimensional space and it resembles the Zarembos construction in N=4 SYM. The second one in
We continue our study of the correlators of a recently discovered family of BPS Wilson loops in N=4 supersymmetric U(N) Yang-Mills theory. We perform explicit computations at weak coupling by means of analytical and numerical methods finding agreemen
We study the algebra of BPS Wilson loops in 3d gauge theories with N=2 supersymmetry and Chern-Simons terms. We argue that new relations appear on the quantum level, and that in many cases this makes the algebra finite-dimensional. We use our results