ترغب بنشر مسار تعليمي؟ اضغط هنا

Hybrid Generative-Retrieval Transformers for Dialogue Domain Adaptation

80   0   0.0 ( 0 )
 نشر من قبل Igor Shalyminov
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Domain adaptation has recently become a key problem in dialogue systems research. Deep learning, while being the preferred technique for modeling such systems, works best given massive training data. However, in the real-world scenario, such resources arent available for every new domain, so the ability to train with a few dialogue examples can be considered essential. Pre-training on large data sources and adapting to the target data has become the standard method for few-shot problems within the deep learning framework. In this paper, we present the winning entry at the fast domain adaptation task of DSTC8, a hybrid generative-retrieval model based on GPT-2 fine-tuned to the multi-domain MetaLWOz dataset. Robust and diverse in response generation, our model uses retrieval logic as a fallback, being SoTA on MetaLWOz in human evaluation (>4% improvement over the 2nd place system) and attaining competitive generalization performance in adaptation to the unseen MultiWOZ dataset.



قيم البحث

اقرأ أيضاً

Dialogue policy optimisation via reinforcement learning requires a large number of training interactions, which makes learning with real users time consuming and expensive. Many set-ups therefore rely on a user simulator instead of humans. These user simulators have their own problems. While hand-coded, rule-based user simulators have been shown to be sufficient in small, simple domains, for complex domains the number of rules quickly becomes intractable. State-of-the-art data-driven user simulators, on the other hand, are still domain-dependent. This means that adaptation to each new domain requires redesigning and retraining. In this work, we propose a domain-independent transformer-based user simulator (TUS). The structure of our TUS is not tied to a specific domain, enabling domain generalisation and learning of cross-domain user behaviour from data. We compare TUS with the state of the art using automatic as well as human evaluations. TUS can compete with rule-based user simulators on pre-defined domains and is able to generalise to unseen domains in a zero-shot fashion.
Spoken dialogue systems allow humans to interact with machines using natural speech. As such, they have many benefits. By using speech as the primary communication medium, a computer interface can facilitate swift, human-like acquisition of informati on. In recent years, speech interfaces have become ever more popular, as is evident from the rise of personal assistants such as Siri, Google Now, Cortana and Amazon Alexa. Recently, data-driven machine learning methods have been applied to dialogue modelling and the results achieved for limited-domain applications are comparable to or outperform traditional approaches. Methods based on Gaussian processes are particularly effective as they enable good models to be estimated from limited training data. Furthermore, they provide an explicit estimate of the uncertainty which is particularly useful for reinforcement learning. This article explores the additional steps that are necessary to extend these methods to model multiple dialogue domains. We show that Gaussian process reinforcement learning is an elegant framework that naturally supports a range of methods, including prior knowledge, Bayesian committee machines and multi-agent learning, for facilitating extensible and adaptable dialogue systems.
An essential problem in domain adaptation is to understand and make use of distribution changes across domains. For this purpose, we first propose a flexible Generative Domain Adaptation Network (G-DAN) with specific latent variables to capture chang es in the generating process of features across domains. By explicitly modeling the changes, one can even generate data in new domains using the generating process with new values for the latent variables in G-DAN. In practice, the process to generate all features together may involve high-dimensional latent variables, requiring dealing with distributions in high dimensions and making it difficult to learn domain changes from few source domains. Interestingly, by further making use of the causal representation of joint distributions, we then decompose the joint distribution into separate modules, each of which involves different low-dimensional latent variables and can be learned separately, leading to a Causal G-DAN (CG-DAN). This improves both statistical and computational efficiency of the learning procedure. Finally, by matching the feature distribution in the target domain, we can recover the target-domain joint distribution and derive the learning machine for the target domain. We demonstrate the efficacy of both G-DAN and CG-DAN in domain generation and cross-domain prediction on both synthetic and real data experiments.
Language models (LM) for interactive speech recognition systems are trained on large amounts of data and the model parameters are optimized on past user data. New application intents and interaction types are released for these systems over time, imp osing challenges to adapt the LMs since the existing training data is no longer sufficient to model the future user interactions. It is unclear how to adapt LMs to new application intents without degrading the performance on existing applications. In this paper, we propose a solution to (a) estimate n-gram counts directly from the hand-written grammar for training LMs and (b) use constrained optimization to optimize the system parameters for future use cases, while not degrading the performance on past usage. We evaluated our approach on new applications intents for a personal assistant system and find that the adaptation improves the word error rate by up to 15% on new applications even when there is no adaptation data available for an application.
133 - Hao Zhou , Pei Ke , Zheng Zhang 2021
Although pre-trained language models have remarkably enhanced the generation ability of dialogue systems, open-domain Chinese dialogue systems are still limited by the dialogue data and the model size compared with English ones. In this paper, we pro pose EVA, a Chinese dialogue system that contains the largest Chinese pre-trained dialogue model with 2.8B parameters. To build this model, we collect the largest Chinese dialogue dataset named WDC-Dialogue from various public social media. This dataset contains 1.4B context-response pairs and is used as the pre-training corpus of EVA. Extensive experiments on automatic and human evaluation show that EVA outperforms other Chinese pre-trained dialogue models especially in the multi-turn interaction of human-bot conversations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا