ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance recovery of long CsI(Tl) scintillator crystals with APD-based readout

418   0   0.0 ( 0 )
 نشر من قبل Pablo Cabanelas
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

CALIFA is the high efficiency and energy resolution calorimeter for the R3B experiment at FAIR, intended for detecting high energy light charged particles and gamma rays in scattering experiments, and is being commissioned during the Phase-0 experiments at FAIR, between 2018 and 2020. It surrounds the reaction target in a segmented configuration with 2432 detection units made of long CsI(Tl) finger-shaped scintillator crystals. CALIFA has a 10 year intended operational lifetime as the R3B calorimeter, necessitating measures to be taken to ensure enduring performance. In this paper we present a systematic study of two groups of 6 different detection units of the CALIFA detector after more than four years of operation. The energy resolution and light output yield are evaluated under different conditions. Tests cover the aging of the first detector units assembled and investigates recovery procedures for degraded detection units. A possible reason for the observed degradation is given, pointing to the crystal-APD coupling.



قيم البحث

اقرأ أيضاً

The light output produced by light ions (Z<=4) in CsI(Tl) crystals is studied over a wide range of detected energies (E<=300 MeV). Energy-light calibration data sets are obtained with the 10 cm crystals in the recently upgraded High-Resolution Array (HiRA10). We use proton recoil data from 40,48Ca + CH2 at 28 MeV/u, 56.6 MeV/u, 39 MeV/u and 139.8 MeV/u and data from a dedicated experiment with direct low-energy beams. We also use the punch through points of p, d, and t particles from 40,48Ca + 58,64Ni, 112,124Sn collisions reactions at 139.8 MeV/u. Non-linearities, arising in particular from Tl doping and light collection efficiency in the CsI crystals, are found to significantly affect the light output and therefore the calibration of the detector response for light charged particles, especially the hydrogen isotopes. A new empirical parametrization of the hydrogen light output, L(E,Z=1,A), is proposed to account for the observed effects. Results are found to be consistent for all 48 CsI(Tl) crystals in a cluster of 12 HiRA10 telescopes.
265 - S. Sweany , W. G. Lynch , K. Brown 2021
To efficiently detect energetic light charged particles, it is common to use arrays of energy-loss telescopes involving two or more layers of detection media. As the energy of the particles increases, thicker layers are usually needed. However, carry ing out measurements with thick-telescopes may require corrections for the losses due to nuclear reactions induced by the incident particles on nuclei within the detector and for the scattering of incident particles out of the detector, without depositing their full energy in the active material. In this paper, we develop a method for measuring such corrections and determine the reaction and out-scattering losses for data measured with the silicon-CsI(Tl) telescopes of the newly developed HiRA10 array. The extracted efficiencies are in good agreement with model predictions using the GEANT4 reaction loss algorithm for Z=1 and Z=2 isotopes. After correcting for the HiRA10 geometry, a general function that describes the efficiencies from the reaction loss in CsI(Tl) crystals as a function of range is obtained.
The performance of scintillator counters with embedded wavelength-shifting fibers has been measured in the Fermilab Meson Test Beam Facility using 120 GeV protons. The counters were extruded with a titanium dioxide surface coating and two channels fo r fibers at the Fermilab NICADD facility. Each fiber end is read out by a 2*2 mm^2 silicon photomultiplier. The signals were amplified and digitized by a custom-made front-end electronics board. Combinations of 5*2 cm^2 and 6*2 cm^2 extrusion profiles with 1.4 and 1.8 mm diameter fibers were tested. The design is intended for the cosmic-ray veto detector for the Mu2e experiment at Fermilab. The light yield as a function of the transverse and longitudinal position of the beam will be given.
We present in this work the calibration procedure and a performance study of long scintillator bars used for the time-of-flight (TOF) measurement in the HADES experiment. The digital front-end electronics installed at the TOF detector required to dev elop novel calibration methods. The exceptional performance of the spectrometer for particle identification and pointing accuracy allows one to determine in great detail the response of scintillators to minimum ionizing particles. A substantial position sensitivity of the calibration parameters has been found, in particular for the signal time walk. After including the position dependence, the timing accuracy for minimum ionizing particles was improved from 190~ps to 135~ps for the shortest rods (1475 mm) and to 165~ps for the longest (2356 mm). These results are in accordance with the time degradation length of the scintillator bars, as determined from previous measurements.
In this study, we evaluate and compare the pulse shape discrimination (PSD) performance of multipixel photon counters (MPPCs, also known as silicon photomultiphers - SiPMs) with that of a typical photomultiplier tube (PMT) when testing using CsI(Tl) scintillators. We use the charge comparison method, whereby we discriminate different types of particles by the ratio of charges integrated within two time-gates (the delayed part and the entire digitized waveform). For a satisfactory PSD performance, a setup should generate many photoelectrons (p.e.) and collect their charges efficiently. The PMT setup generates more p.e. than the MPPC setup does. With the same digitizer and the same long time-gate (the entire digitized waveform), the PMT setup is also better in charge collection. Therefore, the PMT setup demonstrates better PSD performance. We subsequently test the MPPC setup using a new data acquisition (DAQ) system. Using this new DAQ, the long time-gate is extended by nearly four times the length when using the previous digitizer. With this longer time-gate, we collect more p.e. at the tail part of the pulse and almost all the charges of the total collected p.e. Thus, the PSD performance of the MPPC setup is improved significantly. This study also provides an estimation of the short time-gate (the delayed part of the digitized waveform) that can give a satisfactory PSD performance without an extensive analysis to optimize this gate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا