ترغب بنشر مسار تعليمي؟ اضغط هنا

Seshat: A tool for managing and verifying annotation campaigns of audio data

115   0   0.0 ( 0 )
 نشر من قبل Hadrien Titeux
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce Seshat, a new, simple and open-source software to efficiently manage annotations of speech corpora. The Seshat software allows users to easily customise and manage annotations of large audio corpora while ensuring compliance with the formatting and naming conventions of the annotated output files. In addition, it includes procedures for checking the content of annotations following specific rules that can be implemented in personalised parsers. Finally, we propose a double-annotation mode, for which Seshat computes automatically an associated inter-annotator agreement with the $gamma$ measure taking into account the categorisation and segmentation discrepancies.



قيم البحث

اقرأ أيضاً

Annotation is the labeling of data by human effort. Annotation is critical to modern machine learning, and Bloomberg has developed years of experience of annotation at scale. This report captures a wealth of wisdom for applied annotation projects, co llected from more than 30 experienced annotation project managers in Bloombergs Global Data department.
We present a lightweight annotation tool, the Data AnnotatoR Tool (DART), for the general task of labeling structured data with textual descriptions. The tool is implemented as an interactive application that reduces human efforts in annotating large quantities of structured data, e.g. in the format of a table or tree structure. By using a backend sequence-to-sequence model, our system iteratively analyzes the annotated labels in order to better sample unlabeled data. In a simulation experiment performed on annotating large quantities of structured data, DART has been shown to reduce the total number of annotations needed with active learning and automatically suggesting relevant labels.
74 - Jie Yang , Yue Zhang , Linwei Li 2017
In this paper, we introduce textsc{Yedda}, a lightweight but efficient and comprehensive open-source tool for text span annotation. textsc{Yedda} provides a systematic solution for text span annotation, ranging from collaborative user annotation to a dministrator evaluation and analysis. It overcomes the low efficiency of traditional text annotation tools by annotating entities through both command line and shortcut keys, which are configurable with custom labels. textsc{Yedda} also gives intelligent recommendations by learning the up-to-date annotated text. An administrator client is developed to evaluate annotation quality of multiple annotators and generate detailed comparison report for each annotator pair. Experiments show that the proposed system can reduce the annotation time by half compared with existing annotation tools. And the annotation time can be further compressed by 16.47% through intelligent recommendation.
Electrocardiography plays an essential role in diagnosing and screening cardiovascular diseases in daily healthcare. Deep neural networks have shown the potentials to improve the accuracies of arrhythmia detection based on electrocardiograms (ECGs). However, more ECG records with ground truth are needed to promote the development and progression of deep learning techniques in automatic ECG analysis. Here we propose a web-based tool for ECG viewing and annotating, LabelECG. With the facilitation of unified data management, LabelECG is able to distribute large cohorts of ECGs to dozens of technicians and physicians, who can simultaneously make annotations through web-browsers on PCs, tablets and cell phones. Along with the doctors from four hospitals in China, we applied LabelECG to support the annotations of about 15,000 12-lead resting ECG records in three months. These annotated ECGs have successfully supported the First China ECG intelligent Competition. La-belECG will be freely accessible on the Internet to support similar researches, and will also be upgraded through future works.
In this manuscript, we introduce a semi-automatic scene graph annotation tool for images, the GeneAnnotator. This software allows human annotators to describe the existing relationships between participators in the visual scene in the form of directe d graphs, hence enabling the learning and reasoning on visual relationships, e.g., image captioning, VQA and scene graph generation, etc. The annotations for certain image datasets could either be merged in a single VG150 data-format file to support most existing models for scene graph learning or transformed into a separated annotation file for each single image to build customized datasets. Moreover, GeneAnnotator provides a rule-based relationship recommending algorithm to reduce the heavy annotation workload. With GeneAnnotator, we propose Traffic Genome, a comprehensive scene graph dataset with 1000 diverse traffic images, which in return validates the effectiveness of the proposed software for scene graph annotation. The project source code, with usage examples and sample data is available at https://github.com/Milomilo0320/A-Semi-automatic-Annotation-Software-for-Scene-Graph, under the Apache open-source license.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا