ﻻ يوجد ملخص باللغة العربية
In this paper we consider the real-valued mass-critical nonlinear Klein-Gordon equations in three and higher dimensions. We prove the dichotomy between scattering and blow-up below the ground state energy in the focusing case, and the energy scattering in the defocusing case. We use the concentration-compactness/rigidity method as R. Killip, B. Stovall, and M. Visan [Trans. Amer. Math. Soc. 364 (2012)]. The main new novelty is to approximate the large scale (low-frequency) profile by the solution of the mass-critical nonlinear Schrodinger equation when the nonlinearity is not algebraic.
We study the scattering problems for the quadratic Klein-Gordon equations with radial initial data in the energy space. For 3D, we prove small data scattering, and for 4D, we prove large data scattering with mass below the ground state.
This article resolves some errors in the paper Scattering threshold for the focusing nonlinear Klein-Gordon equation, Analysis & PDE 4 (2011) no. 3, 405-460. The errors are in the energy-critical cases in two and higher dimensions.
We prove global existence backwards from the scattering data posed at infinity for the Maxwell Klein Gordon equations in Lorenz gauge satisfying the weak null condition. The asymptotics of the solutions to the Maxwell Klein Gordon equations in Lorenz
We describe the long time behavior of small non-smooth solutions to the nonlinear Klein-Gordon equations on the sphere S^2. More precisely, we prove that the low harmonic energies (also called super-actions) are almost preserved for times of order $e
We consider the nonlinear Klein-Gordon equation in $R^d$. We call multi-solitary waves a solution behaving at large time as a sum of boosted standing waves. Our main result is the existence of such multi-solitary waves, provided the composing boosted