ترغب بنشر مسار تعليمي؟ اضغط هنا

Holding and transferring matter-wave solitons against gravity by spin-orbit-coupling tweezers

81   0   0.0 ( 0 )
 نشر من قبل Bin Liu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider possibilities to grasp and drag one-dimensional solitons in two-component Bose- Einstein condensates (BECs), under the action of gravity, by tweezers induced by spatially confined spin-orbit (SO) coupling applied to the BEC, with the help of focused laser illumination. Solitons of two types are considered, semi-dipoles and mixed modes. We find critical values of the gravity force, up to which the solitons may be held or transferred by the tweezers. The dependence of the critical force on the magnitude and spatial extension of the localized SO interaction, as well as on the solitons norm and speed (in the transfer regime), are systematically studied by means of numerical methods, and analytically with the help of a quasi-particle approximation for the soliton. In particular, a noteworthy finding is that the critical gravity force increases with the increase of the transfer speed (i.e., moving solitons are more robust than quiescent ones). Nonstationary regimes are addressed too, by considering abrupt application of gravity to solitons created in the weightless setting. In that case, solitons feature damped shuttle motion, provided that the gravity force does not exceed a dynamical critical value, which is smaller than its static counterpart. The results may help to design gravimeters based on ultracold atoms.



قيم البحث

اقرأ أيضاً

225 - Elad Shamriz , Zhaopin Chen , 2020
It was recently demonstrated that two-dimensional Townes solitons (TSs) in two-component systems with cubic self-focusing, which are normally made unstable by the critical collapse, can be stabilized by linear spin-orbit coupling (SOC), in Bose-Einst ein condensates and optics alike. We demonstrate that one-dimensional TSs, realized as optical spatial solitons in a planar dual-core waveguide with dominant quintic self-focusing, may be stabilized by SOC-like terms emulated by obliquity of the coupling between cores of the waveguide. Thus, SOC offers a universal mechanism for the stabilization of the TSs. A combination of systematic numerical considerations and analytical approximations identifies a vast stability area for skew-symmetric solitons in the systems main (semi-infinite) and annex (finite) bandgaps. Tilted (moving) solitons are unstable, spontaneously evolving into robust breathers. For broad solitons, diffraction, represented by second derivatives in the system, may be neglected, leading to a simplified model with a finite bandgap. It is populated by skew-antisymmetric gap solitons, which are nearly stable close to the gaps bottom.
We consider a one-dimensional model of a two-component Bose-Einstein condensate in the presence of periodic external potentials of opposite signs, acting on the two species. The interaction between the species is attractive, while intra-species inter actions may be attractive too [the system of the right-bright (BB) type], or of opposite signs in the two components [the gap-bright (GB) model]. We identify the existence and stability domains for soliton complexes of the BB and GB types. The evolution of unstable solitons leads to the establishment of oscillatory states. The increase of the strength of the nonlinear attraction between the species results in symbiotic stabilization of the complexes, despite the fact that one component is centered around a local maximum of the respective periodic potential.
The dynamics of initially truncated and bent line solitons for the Kadomtsev-Petviashvili (KPII) equation modelling internal and surface gravity waves are analysed using modulation theory. In contrast to previous studies on obliquely interacting soli tons that develop from acute incidence angles, this work focuses on initial value problems for the obtuse incidence of two or three partial line solitons, which propagate away from one another. Despite counterpropagation, significant residual soliton interactions are observed with novel physical consequences. The initial value problem for a truncated line soliton-describing the emergence of a quasi-one-dimensional soliton from a wide channel-is shown to be related to the interaction of oblique solitons. Analytical descriptions for the development of weak and strong interactions are obtained in terms of interacting simple wave solutions of modulation equations for the local soliton amplitude and slope. In the weak interaction case, the long-time evolution of truncated and large obtuse angle solitons exhibits a decaying, parabolic wave profile with temporally increasing focal length that asymptotes to a cylindrical Korteweg-de Vries soliton. In contrast, the strong interaction case of slightly obtuse interacting solitons evolves into a steady, one-dimensional line soliton with amplitude reduced by an amount proportional to the incidence slope. This strong interaction is identified with the Mach expansion of a soliton with an expansive corner, contrasting with the well-known Mach reflection of a soliton with a compressive corner. Interestingly, the critical angles for Mach expansion and reflection are the same. Numerical simulations of the KPII equation quantitatively support the analytical findings.
We introduce a system of two component two-dimensional (2D) complex Ginzburg-Landau equations (CGLEs) with spin-orbit-coupling (SOC) describing a wide-aperture microcavity laser with saturable gain and absorption. We report families of two-component self-trapped dissipative laser solitons in this system. The SOC terms are represented by the second-order differential operators, which sets the difference, $|Delta S|=2$, between the vorticities of the two components. We have found stable solitons of two types: vortex-antivortex (VAV) and semi-vortex (SV) bound states, featuring vorticities $left( -1,+1right) $ and $left( 0,2right) $, respectively. In previous works, 2D localized states of these types were found only in models including a trapping potential, while we are dealing with the self-trapping effect in the latteraly unconfined (free-space) model. The SV states are stable in a narrow interval of values of the gain coefficients. The stability interval is broader for VAV states, and it may be expanded by making SOC stronger (although the system without SOC features a stability interval too). We have found three branches of stationary solutions of both VAV and SV types, two unstable and one stable. The latter one is an attractor, as the unstable states spontaneously transform into the stable one, while retaining vorticities of their components. Unlike previously known 2D localized states, maintained by the combination of the trapping potential and SOC, in the present system the VAV and SV complexes are stable in the absence of diffusion. In contrast with the bright solitons in conservative models, chemical potentials of the dissipative solitons reported here are positive.
Since the realization of Bose-Einstein condensates (BECs) in optical potentials, intensive experimental and theoretical investigations have been carried out for matter-wave solitons, coherent structures, modulational instability (MI), and nonlinear e xcitation of BEC matter waves, making them objects of fundamental interest in the vast realm of nonlinear physics and soft condensed-matter physics. Ubiquitous models, which are relevant to the description of diverse nonlinear media are provided by the nonlinear Schrodinger (NLS), alias Gross-Pitaevskii (GP) equations. In many settings, nontrivial solitons and coherent structures, which do not exist or are unstable in free space, can be created or stabilized by means of various management techniques, which are represented by NLS and GP equations with spatiotemporal coefficients in front of linear or nonlinear terms. Developing this direction of research in various settings, efficient schemes of the spatiotemporal modulation of coefficients in the NLS/GP equations have been designed to engineer desirable robust nonlinear modes. This direction and related ones are the main topic of the present review. A broad and important theme is the creation and control of 1D solitons in BEC by means of combination of the temporal or spatial modulation of the nonlinearity strength and a time-varying trapping potential. An essential ramification of this topic is analytical and numerical analysis of MI of continuous-wave states, and control of the nonlinear development of MI. In addition to that, the review also includes some topics that do not directly include spatiotemporal modulation but address physically important phenomena which demonstrate similar soliton dynamics. These are soliton motion in binary BEC, three-component solitons in spinor BEC, and dynamics of two-component solitons under the action of spin-orbit coupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا