ﻻ يوجد ملخص باللغة العربية
Using first-principles density functional theory calculations, combined with a topological analysis, we have investigated the electronic properties of $Cd_3As_2$ and $Na_3Bi$ Dirac topological semimetals doped with non-magnetic and magnetic impurities. Our systematic analysis shows that the selective breaking of the inversion, rotational and time-reversal symmetry, controlled by specific choices of the impurity doping, induces phase transitions from the original Dirac semimetal to a variety of topological phases such as, topological insulator, trivial semimetal, non-magnetic and magnetic Weyl semimetal, and Chern insulator. The Dirac semimetal phase can exist only if the rotational symmetry $C_n$ with $n > 2$ is maintained. One particularly interesting phase emerging in doped $Cd_3As_2$ is a coexisting Dirac-Weyl phase, which occurs when only inversion symmetry is broken while time-reversal symmetry and rotational symmetry are both preserved. To further characterize the low-energy excitations of this phase, we have complemented our density functional results with a continuum four-band $kcdot p$ model, which indeed displays nodal points of both Dirac and Weyl type. The coexisting phase appears as a transition point between two topologically distinct Dirac phases, but may also survive in a small region of parameter space controlled by external strain.
Cadmium arsenide Cd$_3$As$_2$ hosts massless Dirac electrons in its ambient-conditions tetragonal phase. We report X-ray diffraction and electrical resistivity measurements of Cd$_3$As$_2$ upon cycling pressure beyond the critical pressure of the tet
We report a room-temperature optical reflectivity study performed on [112]-oriented Cd$_3$As$_2$ single crystals over a broad energy range under external pressure up to 10 GPa. The abrupt drop of the band dispersion parameter ($z$-parameter) and the
The ferromagnetic topological insulator V:(Bi,Sb)$_2$Te$_3$ has been recently reported as a quantum anomalous Hall (QAH) system. Yet the microscopic origins of the QAH effect and the ferromagnetism remain unclear. One key aspect is the contribution o
In this paper we present detailed study of the density of states near defects in Bi$_2$Se$_3$. In particular, we present data on the commonly found triangular defects in this system. While we do not find any measurable quasiparticle scattering interf
We study disorder induced topological phase transitions in magnetically doped (Bi, Sb)$_2$Te$_3$ thin films, by using large scale transport simulations of the conductance through a disordered region coupled to reservoirs in the quantum spin Hall regi