ترغب بنشر مسار تعليمي؟ اضغط هنا

A new method for deriving composition of S-type asteroids from noisy and incomplete near-infrared spectra

307   0   0.0 ( 0 )
 نشر من قبل Juan Sanchez
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The surface composition of S-type asteroids can be determined using band parameters extracted from their near-infrared (NIR) spectra (0.7-2.50 $mu$m) along with spectral calibrations derived from laboratory samples. In the past, these empirical equations have been obtained by combining NIR spectra of meteorite samples with information about their composition and mineral abundance. For these equations to give accurate results, the characteristics of the laboratory spectra they are derived from should be similar to those of asteroid spectral data (i.e., similar signal-to-noise ratio (S/N) and wavelength range). Here we present new spectral calibrations that can be used to determine the mineral composition of ordinary chondrite-like S-type asteroids. Contrary to previous work, the S/N of the ordinary chondrite spectra used in this study has been decreased to recreate the S/N typically observed among asteroid spectra, allowing us to obtain more realistic results. In addition, the new equations have been derived for five wavelength ranges encompassed between 0.7 and 2.50 $mu$m, making it possible to determine the composition of asteroids with incomplete data. The new spectral calibrations were tested using band parameters measured from the NIR spectrum of asteroid (25143) Itokawa, and comparing the results with laboratory measurements of the returned samples. We found that the spectrally derived olivine and pyroxene chemistry, which are given by the molar contents of fayalite (Fa) and ferrosilite (Fs), are in excellent agreement with the mean values measured from the samples (Fa$_{28.6pm1.1}$ and Fs$_{23.1pm2.2}$), with a maximum difference of 0.6 mol% for Fa and 1.4 mol% for Fs.



قيم البحث

اقرأ أيضاً

We study the visible and near-infrared (NIR) spectral properties of different ACO populations and compare them to the independently determined properties of comets. We select our ACOs sample based on published dynamical criteria and present our own observational results obtained using the 10.4m Gran Telescopio Canarias (GTC), the 4.2m William Herschel Telescope (WHT), the 3.56m Telescopio Nazionale Galileo (TNG), and the 2.5m Isaac Newton Telescope (INT), all located at the El Roque de los Muchachos Observatory (La Palma, Spain), and the 3.0m NASA Infrared Telescope Facility (IRTF), located at the Mauna Kea Observatory, in Hawaii. We include in the analysis the spectra of ACOs obtained from the literature. We derive the spectral class and the visible and NIR spectral slopes. We also study the presence of hydrated minerals by studying the 0.7 $mu$m band and the UV-drop below 0.5 $mu$m associated with phyllosilicates. We present new observations of 17 ACOs, 11 of them observed in the visible, 2 in the NIR and 4 in the visible and NIR. We also discuss the spectra of 12 ACOs obtained from the literature. All but two ACOs have a primitive-like class spectrum (X or D-type). Almost 100% of the ACOs in long-period cometary orbits (Damocloids) are D-types. Those in Jupiter family comet orbits (JFC-ACOs) are $sim$ 60% D-types and $sim$ 40% X-types. The mean spectral slope $S$ of JFC-ACOs is 9.7 $pm$ 4.6 %/1000 AA and for the Damocloids this is 12.2 $pm$ 2.0 %/1000 AA . No evidence of hydration on the surface of ACOs is found from their visible spectra. The slope and spectral class distribution of ACOs is similar to that of comets. The spectral classification, the spectral slope distribution of ACOs, and the lack of spectral features indicative of the presence of hydrated minerals on their surface, strongly suggest that ACOs are likely dormant or extinct comets.
A method for classifying orbits near asteroids under a polyhedral gravitational field is presented, and may serve as a valuable reference for spacecraft orbit design for asteroid exploration. The orbital dynamics near asteroids are very complex. Acco rding to the variation in orbit characteristics after being affected by gravitational perturbation during the periapsis passage, orbits near an asteroid can be classified into 9 categories: (1) surroundingto-surrounding, (2) surrounding-to-surface, (3) surroundingto-infinity, (4) infinity-to-infinity, (5) infinity-to-surface, (6) infinity-to-surrounding, (7) surface-to-surface, (8) surfaceto-surrounding, and (9) surface-to- infinity. Assume that the orbital elements are constant near the periapsis, the gravitation potential is expanded into a harmonic series. Then, the influence of the gravitational perturbation on the orbit is studied analytically. The styles of orbits are dependent on the argument of periapsis, the periapsis radius, and the periapsis velocity. Given the argument of periapsis, the orbital energy before and after perturbation can be derived according to the periapsis radius and the periapsis velocity. Simulations have been performed for orbits in the gravitational field of 216 Kleopatra. The numerical results are well consistent with analytic predictions.
117 - Francisco Valdes 2019
The distribution of solar system absolute magnitudes ($H$) for the near-Earth asteroids (NEAs) observable near opposition -- i.e. Amors, Apollos, and Atens ($A^3$) -- is derived from the set of ALL currently known NEAs. The result is based only on co mmon sense assumptions of uniformly random distributions and that the orbital phase space and $H$-magnitude distribution of known NEAs is representative of the total population. There is no population or other modeling and no assumption on albedo except in interpreting the result as a size-frequency distribution (SFD). The analysis is based on the 18355 $A^3$ NEAs cataloged by the MPC as of June 2018. The observations from 9 of the top programs (in terms of number of distinct NEAs observed) and the smaller but deeper DECam NEO Survey are used, comprising 74696 measurements of 13466 NEAs observed within 30 deg of opposition. The only parameter in the analysis is an estimate of the detection magnitude limits for each program. A single power-law slope for the cumulative distribution, $log(N<H)=0.50pm0.03H$, for $H < 27$ is found with no evidence for additional structure. A turn-over fainter than 27th magnitude may occur, but the population of known NEAs is dropping off rapidly because they are difficult to detect and so possibly is a completeness effect. Connecting to the nearly complete census of the brightest/biggest NEAs (diameter $> {sim}2$Km) provides a normalization that estimates ${sim}10^8 A^3$ NEAs with $H < {sim}27$ corresponding to NEAs greater than ${sim}10$m in diameter for reasonable typical albedos. Restricting the analysis to Earth crossing asteroids (10839 known, 7336 selected, 36541 observed) produces the same power-law slope.
In the past, constraining the surface composition of near-Earth asteroids (NEAs) has been difficult due to the lack of high quality near-IR spectral data (0.7-2.5 microns) that contain mineralogically diagnostic absorption bands. Here we present visi ble (0.43-0.95 microns) and near-infrared (0.7-2.5 microns) spectra of nine NEAs and five Mars-crossing asteroids (MCs). The studied NEAs are: 4055 Magellan, 19764 (2000 NF5), 89830 (2002 CE), 138404 (2000 HA24), 143381 (2003 BC21), 159609 (2002 AQ3), 164121 (2003 YT1), 241662 (2000 KO44) and 2007 ML13. The studied MCs are: 1656 Suomi, 2577 Litva, 5407 (1992 AX), 22449 Ottijeff and 47035 (1998 WS). The observations were conducted with the NTT at La Silla, Chile, the 2.2 m telescope at Calar Alto, Spain, and the IRTF on Mauna Kea, Hawaii. The taxonomic classification (Bus system) of asteroids showed that all observed MC asteroids belong to the S-complex, including the S, Sr and Sl classes. Seven of the NEAs belong to the S-complex, including the S, Sa, Sk and Sl classes, and two NEAs were classified as V-types. The classification of the NEA 164121 (2003 YT1) as a V-type was made on the basis of its near-infrared spectrum since no visible spectrum is available for this asteroid. A mineralogical analysis was performed on six of the asteroids (those for which near-IR spectra were obtained or previously available). We found that three asteroids (241662 (2000 KO44), 19764 (2000 NF5), 138404 (2000 HA24)) have mafic silicate compositions consistent with ordinary chondrites, while three others (4055 Magellan, 164121 (2003 YT1), 5407 (1992 AX)) are pyroxene-dominated basaltic achondrite assemblages. In the case of 5407 (1992 AX) we found that its basaltic surface composition contrasts its taxonomic classification as a S-type.
We report near-infrared (0.7-2.5 micron) reflectance spectra for each of the six target asteroids of the forthcoming NASA Discovery-class mission Lucy. Five Jupiter Trojans (the binary (617) Patroclus system, (3548) Eurybates, (21900) Orus, (11351) L eucus, and (15094) Polymele) are well-characterized, with measurable spectral differences. We also report a survey-quality spectrum for main belt asteroid (52246) Donaldjohanson. We measured a continuum of spectral slopes including red (Orus, Leucus), less red (Eurybates, Patroclus-Menoetius) and intermediate (Polymele), indicating a range of compositional end-members or geological histories. We perform radiative transfer modeling of several possible surface compositions. We find that the mild-sloped spectra and low albedo of Patroclus and Eurybates imply similar compositions. Eurybates (~7 wt.% water ice) and Patroclus (~4 wt.% water ice) are consistent with a hydrated surface. Models for Orus and Leucus are consistent with each other and require a significantly more reddening agent (e.g. iron-rich silicates or tholin-like organics). Polymele has a linear spectrum like Patroclus, but a higher albedo more closely aligned with Orus/Leucus, defying simple grouping. Solar system formation models generally predict that the Jovian Trojans accreted in the outer solar system. Our observations and analysis are generally consistent with this expectation, although not uniquely so.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا