ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational couplings in Chameleon models

69   0   0.0 ( 0 )
 نشر من قبل Macarena Lagos
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider cosmological models where dark energy is described by a dynamical field equipped with the Chameleon screening mechanism, which serves to hide its effects in local dense regions and to conform to Solar System observations. In these models, there is no universal gravitational coupling and here we study the effective couplings that determine the force between massive objects, $G_N$, and the propagation of gravitational waves, $G_{gw}$. In particular, we revisit the Chameleon screening mechanism without neglecting the time dependence of the galactic environment where local regions are embedded in, and analyze the induced time evolution on $G_N$ and $G_{gw}$, which can be tested with Lunar Laser Ranging and direct gravitational waves observations. We explicitly show how and why these two couplings generically differ. We also find that due to the particular way the Chameleon screening mechanism works, their time evolutions are highly suppressed in the weak-field non-relativistic approximation.

قيم البحث

اقرأ أيضاً

We discuss the scalar mode of gravitational waves emerging in the context of $F(R)$ gravity by taking into account the chameleon mechanism. Assuming a toy model with a specific matter distribution to reproduce the environment of detection experiment by a ground-based gravitational wave observatory, we find that chameleon mechanism remarkably suppresses the scalar wave in the atmosphere of Earth, compared with the tensor modes of the gravitational waves. We also discuss the possibility to detect and constrain scalar waves by the current gravitational observatories and advocate a necessity of the future space-based observations.
Chameleon gravity is an example of a model that gives rise to interesting phenomenology on cosmological scales while simultaneously possessing a screening mechanism, allowing it to avoid solar system constraints. Such models result in non-linear fiel d equations, which can be solved analytically only in simple highly symmetric systems. In this work we study the equation of motion of a scalar-tensor theory with chameleon screening using the finite element method. More specifically, we solve the field equation for spherical and triaxial NFW cluster-sized halos. This allows a detailed investigation of the relationship between the NFW concentration and the virial mass parameters and the magnitude of the chameleon acceleration, as measured at the virial radius. In addition, we investigate the effects on the chameleon acceleration due to halo triaxiality. We focus on the parameter space regions that are still allowed by the observational constraints. We find that given our dataset, the largest allowed value for the chameleon-to-NFW acceleration ratio at the virial radius is $sim 10^{-7}$. This result strongly indicates that the chameleon models that are still allowed by the observational constraints would not lead to any measurable effects on galaxy cluster scales. Nonetheless, we also find that there is a direct relationship between the NFW potential and the chameleon-to-NFW acceleration ratio at the virial radius. Similarly, there is a direct (yet a much more complicated) relationship between the NFW concentration, the virial mass and the acceleration ratios at the virial radius. Finally, we find that triaxiality introduces extra directional effects on the acceleration measurements. These effects in combination could potentially be used in future observational searches for fifth forces.
The study of current gravitational waves catalogues provide an interesting model independent way to understand further the nature of dark energy. Taking advantage of them, in this work we present an update of the constraints related to dynamical dark energy parameterisations using recent Gravitational-Wave Transient catalogues (GWTC1 and GWTC-2). Also, we present a new treatment for GW to establish the relation between the standard luminosity distance and the siren distance. According to our Bayesian results developed with our join SNeIa+CC+GW database, the $Lambda$CDM model shows a preference against all the dark energy parameterisations considered here. Moreover, with the current GW transient database the GR standard luminosity and siren distances ratio shows a strong preference against the modified gravity $delta$-models considered here.
146 - Casey McGrath 2021
Pulsar timing experiments are currently searching for gravitational waves, and this dissertation focuses on the development and study of the pulsar timing residual models used for continuous wave searches. The first goal of this work is to re-present much of the fundamental physics and mathematics concepts behind the calculations and theory used in pulsar timing. While there exist many reference sources in the literature, I try to offer a fully self-contained explanation of the fundamentals of this research which I hope the reader will find helpful. The next goal broadly speaking has been to further develop the mathematics behind the currently used pulsar timing models for detecting gravitational waves with pulsar timing experiments. I classify four regimes of interest, governed by frequency evolution and wavefront curvature effects incorporated into the timing residual models. Of these four regimes the plane-wave models are well established in previous literature. I add a new regime which I label Fresnel, as I show it becomes important for significant Fresnel numbers describing the curvature of the gravitational wavefront. Then I give two in-depth studies. The first forecasts the ability of future pulsar timing experiments to probe and measure these Fresnel effects. The second further generalizes the models to a cosmologically expanding universe, and I show how the Hubble constant can be measured directly in the most generalized pulsar timing residual model. This offers future pulsar timing experiments the possibility of being able to procure a purely gravitational wave-based measurement of the Hubble constant. The final chapter shows the initial steps taken to extend this work in the future toward Doppler tracking experiments.
Gravitational waves radiated by the coalescence of compact-object binaries containing a neutron star and a black hole are one of the most interesting sources for the ground-based gravitational-wave observatories Advanced LIGO and Advanced Virgo. Adva nced LIGO will be sensitive to the inspiral of a $1.4, M_odot$ neutron star into a $10,M_odot$ black hole to a maximum distance of $sim 900$ Mpc. Achieving this sensitivity and extracting the physics imprinted in observed signals requires accurate modeling of the binary to construct template waveforms. In a NSBH binary, the black hole may have significant angular momentum (spin), which affects the phase evolution of the emitted gravitational waves. We investigate the ability of post-Newtonian (PN) templates to model the gravitational waves emitted during the inspiral phase of NSBH binaries. We restrict the black holes spin to be aligned with the orbital angular momentum and compare several approximants. We examine restricted amplitude waveforms that are accurate to 3.5PN order in the orbital dynamics and complete to 2.5PN order in the spin dynamics. We also consider PN waveforms with the recently derived 3.5PN spin-orbit and 3PN spin-orbit tail corrections. We compare these approximants to the effective-one-body model. For all these models, large disagreements start at low to moderate black hole spins, particularly for binaries where the spin is anti-aligned with the orbital angular momentum. We show that this divergence begins in the early inspiral at $v sim 0.2$ for $chi_{BH} sim 0.4$. PN spin corrections beyond those currently known will be required for optimal detection searches and to measure the parameters of neutron star--black hole binaries. While this complicates searches, the strong dependence of the gravitational-wave signal on the spin dynamics will make it possible to extract significant astrophysical information.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا