ﻻ يوجد ملخص باللغة العربية
Frustration represents an essential feature in the behavior of magnetic materials when constraints on the microscopic Hamiltonian cannot be satisfied simultaneously. This gives rise to exotic phases of matter including spin liquids, spin ices, and stripe phases. Here we demonstrate an approach to understanding the microscopic effects of frustration by computing the phases of a 468-spin Shastry-Sutherland Ising Hamiltonian using a quantum annealer. Our approach uses mean-field boundary conditions to mitigate effects of finite size and defects alongside an iterative quantum annealing protocol to simulate statistical physics. We recover all phases of the Shastry-Sutherland Ising model -- including the well-known fractional magnetization plateau -- and the static structure factor characterizing the critical behavior at these transitions. These results establish quantum annealing as an emerging method in understanding the effects of frustration on the emergence of novel phases of matter and pave the way for future comparisons with real experiments.
We investigate the quantum annealing of the ferromagnetic $ p $-spin model in a dissipative environment ($ p = 5 $ and $ p = 7 $). This model, in the large $ p $ limit, codifies the Grovers algorithm for searching in an unsorted database. The dissipa
Using the density-matrix renormalization group method for the ground state and excitations of the Shastry-Sutherland spin model, we demonstrate the existence of a narrow quantum spin liquid phase between the previously known plaquette-singlet and ant
Classical models with complex energy landscapes represent a perspective avenue for the near-term application of quantum simulators. Until now, many theoretical works studied the performance of quantum algorithms for models with a unique ground state.
Neutron diffraction measurements were carried out on single crystals and powders of Yb2Pt2Pb, where Yb moments form planes of orthogonal dimers in the frustrated Shastry-Sutherland Lattice (SSL). Yb2Pt2Pb orders antiferromagnetically at TN=2.07 K, an
The phase diagrams of the frustrated classical spin model with Dzyaloshinskii-Moriya (DM) interaction on the Shastry-Sutherland (S-S) lattice are studied by means of Monte Carlo simulation. For ferromagnetic next-nearest-neighboring (J2) interactions