ﻻ يوجد ملخص باللغة العربية
The interactions among human beings represent the backbone of our societies. How people interact, establish new connections, and allocate their activities among these links can reveal a lot of our social organization. Despite focused attention by very diverse scientific communities, we still lack a first-principles modeling framework able to account for the birth and evolution of social networks. Here, we tackle this problem by looking at social interactions as a way to explore a very peculiar space, namely the adjacent possible space, i.e., the set of individuals we can meet at any given point in time during our lifetime. We leverage on a recent mathematical formalization of the adjacent possible space to propose a first-principles theory of social exploration based on simple microscopic rules defining how people get in touch and interact. The new theory predicts both microscopic and macroscopic features of social networks. The most striking feature captured on the microscopic side is the probability for an individual, with already $k$ connections, to acquire a new acquaintance. On the macroscopic side, the model reproduces the main static and dynamic features of social networks: the broad distribution of degree and activities, the average clustering coefficient and the innovation rate at the global and local level. The theory is born out in three diverse real-world social networks: the network of mentions between Twitter users, the network of co-authorship of the American Physical Society and a mobile-phone-call network.
By means of extensive computer simulations, the authors consider the entangled coevolution of actions and social structure in a new version of a spatial Prisoners Dilemma model that naturally gives way to a process of social differentiation. Diverse
We study the evolutionary Prisoners Dilemma on two social networks obtained from actual relational data. We find very different cooperation levels on each of them that can not be easily understood in terms of global statistical properties of both net
Social influence drives both offline and online human behaviour. It pervades cultural markets, and manifests itself in the adoption of scientific and technical innovations as well as the spread of social practices. Prior empirical work on the diffusi
Zipfs, Heaps and Taylors laws are ubiquitous in many different systems where innovation processes are at play. Together, they represent a compelling set of stylized facts regarding the overall statistics, the innovation rate and the scaling of fluctu
Based on some analytic structural properties of the Gini and Kolkata indices for social inequality, as obtained from a generic form of the Lorenz function, we make a conjecture that the limiting (effective saturation) value of the above-mentioned ind