ﻻ يوجد ملخص باللغة العربية
$mathrm{beta}$-Gallium oxide ($mathrm{betambox{-}Ga_{2}O_{3}}$) is an emerging widebandgap semiconductor for potential application in power and RF electronics applications. Initial theoretical calculation on a 2-dimensional electron gas (2DEG) in $mathrm{betambox{-}(Al_{x}Ga_{1-x})_{2}O_{3}/Ga_{2}O_{3}}$ heterostructures show the promise for high speed transistors. However, the experimental results do not get close to the predicted mobility values. In this work, We perform more comprehensive calculations to study the low field 2DEG transport properties in the $mathrm{betambox{-}(Al_{x}Ga_{1-x})_{2}O_{3}/Ga_{2}O_{3}}$ heterostructure. A self-consistent Poisson-Schrodinger simulation of heterostructure is used to obtain the subband energies and wavefunctions. The electronic structure, assuming confinement in a particular direction, and the phonon dispersion is calculated based on first principle methods under DFT and DFPT framework. Phonon confinement is not considered for the sake of simplicity. The different scattering mechanisms that are included in the calculation are phonon (polar and non-polar), remote impurity, alloy and interface-roughness. We include the full dynamic screening polar optical phonon screening. We report the temperature dependent low-field electron mobility.
The $alpha$ phase of $Ga_{2}O_{3}$ is an ultra-wideband semiconductor with potential power electronics applications. In this work, we calculate the low field electron mobility in $alpha-Ga_{2}O_{3}$ from first principles. The 10 atom unit cell contri
Wide and ultra-wide band gap semiconductors can provide excellent performance due to their high energy band gap, which leads to breakdown electric fields that are more than an order of magnitude higher than conventional silicon electronics. In materi
We use a mapping of the multiband Hubbard model for $CuO_{3}$ chains in $RBa_{2}Cu_{3}0_{6+x}$ (R=Y or a rare earth) onto a $t-J$ model and the description of the charge dynamics of the latter in terms pf s spinless model, to study the electronic str
We report on the design and demonstration of ${beta}-(Al_{0.18}Ga_{0.82})_2O_3/Ga_2O_3$ modulation doped heterostructures to achieve high sheet charge density. The use of a thin spacer layer between the Si delta-doping and heterojunction interface wa
We report transport and magnetic relaxation measurements in the mixed state of strongly underdoped Y_{1-x}Pr_{x}Ba_{2}Cu_{3}O_{7} crystals. A transition from thermally activated flux creep to temperature independent quantum flux creep is observed in