ﻻ يوجد ملخص باللغة العربية
In current work, non-familiar shifted Lucas polynomials are introduced. We have constructed a computational wavelet technique for solution of initial/boundary value second order differential equations. For this numerical scheme, we have developed weight function and Rodrigues formula for Lucas polynomials. Further, Lucas polynomials and their properties are used to propose shifted Lucas polynomials and then utilization of shifted Lucas polynomials provides us shifted Lucas wavelet. We furnished the operational matrix of differentiation and the product operational matrix of the shifted Lucas wavelets. Moreover, convergence and error analysis ensure accuracy of the proposed method. Illustrative examples show that the present method is numerically fruitful, effective and convenient for solving differential equations
We propose a signal analysis tool based on the sign (or the phase) of complex wavelet coefficients, which we call a signature. The signature is defined as the fine-scale limit of the signs of a signals complex wavelet coefficients. We show that the s
Newtons method for polynomial root finding is one of mathematics most well-known algorithms. The method also has its shortcomings: it is undefined at critical points, it could exhibit chaotic behavior and is only guaranteed to converge locally. Based
We introduce a new efficient algorithm for Helmholtz problems in perforated domains with the design of the scheme allowing for possibly large wavenumbers. Our method is based upon the Wavelet-based Edge Multiscale Finite Element Method (WEMsFEM) as p
Motivated by the recent work [He-Yuan, Balanced Augmented Lagrangian Method for Convex Programming, arXiv: 2108.08554v1, (2021)], a novel Augmented Lagrangian Method (ALM) has been proposed for solving a family of convex optimization problem subject
We present a wavelet-based adaptive method for computing 3D multiscale flows in complex, time-dependent geometries, implemented on massively parallel computers. While our focus is on simulations of flapping insects, it can be used for other flow prob