ترغب بنشر مسار تعليمي؟ اضغط هنا

Profitability of Photovoltaic and Battery Systems on Municipal Buildings

159   0   0.0 ( 0 )
 نشر من قبل Anke Weidlich
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The increasing gap between electricity prices and feed-in tariffs for photovoltaic (PV) electricity in many countries, along with the recent strong cost degression of batteries, led to a rise in installed combined PV and battery systems worldwide. The load profile of a property greatly affects the self-consumption rate and, thus, the profitability of the system. Therefore, insights from analyses of residential applications, which are well studied, cannot simply be transferred to other types of properties. In comparison to residential applications, PV is especially suitable for municipal buildings, due to their better match of demand and supply. In order to analyze the value of additional batteries, municipal PV battery systems of different sizes were simulated, taking load profiles of 101 properties as inputs. It was found that self-consumption differs significantly from households, while different types of municipal buildings are largely similar in terms of the indicators analyzed. The share of electricity consumed during summertime was found to have the most significant impact on the self-consumption rate for most considered system sizes. Due to lower electricity tariffs and lower increases in self-consumption provided through batteries in municipal buildings, the investment into a battery is not economically advantageous in most of the cases considered.

قيم البحث

اقرأ أيضاً

Decentralized renewable energy systems can be low-carbon power sources, and promoters of local economies. It is often argued that decentralized generation also helps reducing transmission costs, as generation is closer to the load, thus utilizing the transmission system less. The research presented here addresses the question whether or not, or under what circumstances this effect of avoided transmission can actually be seen for a community-operated cluster of photovoltaic (PV) power plants in two sample locations, one in Germany and one in Japan. For the analysis, the newly developed instrument of MPI-MPE diagrams is used, which plot the maximum power import (MPI) and maximum power export (MPE) in relation to the reference case of no local generation. Results reveal that for moderately sized PV systems without battery storage, avoided transmission can be seen in the Japanese model location, but not in Germany. It was also found that an additional battery storage can lead to avoided transmission in both locations, even for large sizes of installed PV capacity.
The air source heat pump (ASHP) systems assisted by solar energy have drawn great attentions, owing to their great feasibility in buildings for space heating/cooling and hot water purposes. However, there are a variety of configurations, parameters a nd performance criteria of solar assisted ASHP systems, leading to a major inconsistency that increase the degree of complexity to compare and implement different systems. A comparative literature review is lacking, with the aim to evaluate the performance of various ASHP systems from three main solar sources, such as solar thermal (ST), photovoltaic (PV) and hybrid photovoltaic/thermal (PV/T). This paper thus conducts a systematic review of the prevailing solar assisted ASHP systems, including their boundary conditions, system configurations, performance indicators, research methodologies and system performance. The comparison result indicates that PV-ASHP system has the best techno-economic performance, which performs best in average with coefficient of performance (COP) of around 3.75, but with moderate cost and payback time. While ST-ASHP and PV/T-ASHP systems have lower performance with mean COP of 2.90 and 3.03, respectively. Moreover, PV/T-ASHP system has the highest cost and longest payback time, while ST-ASHP has the lowest ones. Future research are discussed from aspects of methodologies, system optimization and standard evaluation.
Repurposing automotive batteries to second-use battery energy storage systems (2-BESS) may have environmental and economic benefits. The challenge with second-use batteries is the uncertainty and diversity of the expected packs in terms of their chem istry, capacity and remaining useful life. This paper introduces a new strategy to optimize 2-BESS performance despite the diversity or heterogeneity of individual batteries while reducing the cost of power conversion. In this paper, the statistical distribution of the power heterogeneity in the supply of batteries is considered when optimizing the choice of power converters and designing the power flow within the battery energy storage system (BESS) to maximize battery utilization. By leveraging a new lite-sparse hierarchical partial power processing (LS-HiPPP) approach, we show a hierarchy in partial power processing (PPP) partitions power converters to a) significantly reduce converter ratings, b) process less power to achieve high system efficiency with lower cost (lower efficiency) converters, and c) take advantage of economies of scale by requiring only a minimal number of sets of identical converters. The results demonstrate that LS-HiPPP architectures offer the best tradeoff between battery utilization and converter cost and had higher system efficiency than conventional partial power processing (C-PPP) in all cases.
121 - Zhao Yuan 2020
We give the definition of s-Vector control by using the complex power vector in the p-q plane to quantify the feasible operational region of battery energy storage system (BESS) and to find the optimal power set-point solution. The s-Vector control f eatures in the avoidance of using costly optimization solvers to solve optimization models online which is also an execution time bottleneck in real-time control. The advantages of s-Vector control are fast and stable computational efficiency. We validate a s-Vector based real-time controller of BESS to provide frequency response and voltage support as ancillary services for the power grid. The objective is to maximize the utility of the BESS asset. We formulate the dynamic capability curve of the DC-AC converter and the security requirements of the battery cells as constrains of the control system. The initial power set-points are obtained based on the traditional droop control approach. Based on s-Vector control, a fast optimization solution algorithm is proposed to find the optimal power set-point and guarantee the security. According to the experimental validation in our 720 kVA / 560 kWh BESS on EPFL campus, we achieve 100 ms of refreshing the real-time control loop. As a benchmark, using optimization solver requires 200 ms to update the real-time control loop.
Frequency response and voltage support are vital ancillary services for power grids. In this paper, we design and experimentally validate a real-time control framework for battery energy storage systems (BESSs) to provide ancillary services to power grids. The objective of the control system is to utilize the full capability of the BESSs to provide ancillary services. We take the voltage-dependent capability curve of the DC-AC converter and the security requirements of BESSs as constraints of the control system. The initial power set-points are obtained based on the droop control approach. To guarantee the feasibility of the power set-points with respect to both the converter capability and BESS security constraints, the final power set-points calculation is formulated as a nonconvex optimization problem. A convex and computationally efficient reformulation of the original control problem is then proposed. We prove that the proposed convex optimization gives the global optimal solution to the original nonconvex problem. We improve the computational performance of this algorithm by discretizing the feasible region of the optimization model. We achieve a 100 ms update time of the controller setpoint computation in the experimental validation of the utility-scale 720 kVA / 560 kWh BESS on the EPFL campus.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا