ترغب بنشر مسار تعليمي؟ اضغط هنا

Cauchys work on integral geometry, centers of curvature, and other applications of infinitesimals

68   0   0.0 ( 0 )
 نشر من قبل Mikhail G. Katz
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Like his colleagues de Prony, Petit, and Poisson at the Ecole Polytechnique, Cauchy used infinitesimals in the Leibniz-Euler tradition both in his research and teaching. Cauchy applied infinitesimals in an 1826 work in differential geometry where infinitesimals are used neither as variable quantities nor as sequences but rather as numbers. He also applied infinitesimals in an 1832 article on integral geometry, similarly as numbers. We explore these and other applications of Cauchys infinitesimals as used in his textbooks and research articles. An attentive reading of Cauchys work challenges received views on Cauchys role in the history of analysis and geometry. We demonstrate the viability of Cauchys infinitesimal techniques in fields as diverse as geometric probability, differential geometry, elasticity, Dirac delta functions, continuity and convergence. Keywords: Cauchy--Crofton formula; center of curvature; continuity; infinitesimals; integral geometry; limite; standard part; de Prony; Poisson



قيم البحث

اقرأ أيضاً

This paper describes the work of Jesse Douglas on the Plateau problem, work for which he was awarded a Fields Medal in 1936, and considers the contributions Tibor Rado made in the 1930s.
139 - Felix C. Klein 2008
Felix Kleins so-called Erlangen Program was published in 1872 as professoral dissertation. It proposed a new solution to the problem how to classify and characterize geometries on the basis of projective geometry and group theory. The given translati on was made in 1892 by Dr. M. W. Haskell and transcribed by N. C. Rughoonauth. We replaced bibliographical data in text and footnotes with pointers to a complete bibliography section.
The local kinematic formulas on complex space forms induce the structure of a commutative algebra on the space $mathrm{Curv}^{mathrm{U}(n)*}$ of dual unitarily invariant curvature measures. Building on the recent results from integral geometry in com plex space forms, we describe this algebra structure explicitly as a polynomial algebra. This is a short way to encode all local kinematic formulas. We then characterize the invariant valuations on complex space forms leaving the space of invariant angular curvature measures fixed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا