ﻻ يوجد ملخص باللغة العربية
Gradient-based inverse design in photonics has already achieved remarkable results in designing small-footprint, high-performance optical devices. The adjoint variable method, which allows for the efficient computation of gradients, has played a major role in this success. However, gradient-based optimization has not yet been applied to the mode-expansion methods that are the most common approach to studying periodic optical structures like photonic crystals. This is because, in such simulations, the adjoint variable method cannot be defined as explicitly as in standard finite-difference or finite-element time- or frequency-domain methods. Here, we overcome this through the use of automatic differentiation, which is a generalization of the adjoint variable method to arbitrary computational graphs. We implement the plane-wave expansion and the guided-mode expansion methods using an automatic differentiation library, and show that the gradient of any simulation output can be computed efficiently and in parallel with respect to all input parameters. We then use this implementation to optimize the dispersion of a photonic crystal waveguide, and the quality factor of an ultra-small cavity in a lithium niobate slab. This extends photonic inverse design to a whole new class of simulations, and more broadly highlights the importance that automatic differentiation could play in the future for tracking and optimizing complicated physical models.
Recent advances in the design and fabrication of on-chip optical microresonators has greatly expanded their applications in photonics, enabling metrology, communications, and on-chip lasers. Designs for these applications require fine control of disp
We introduce a systematic approach for designing 3D nonlinear photonic crystals and pump beams for generating desired quantum correlations between structured photon-pairs. Our model is fully differentiable, allowing accurate and efficient learning and discovery of novel designs.
To be useful for most scientific and medical applications, compact particle accelerators will require much higher average current than enabled by current architectures. For this purpose, we propose a photonic crystal architecture for a dielectric las
Photonic band structures are a typical fingerprint of periodic optical structures, and are usually observed in spectroscopic quantities such as transmission, reflection and absorption. Here we show that also the chiro-optical response of a metasurfac
Photonic inverse design has emerged as an indispensable engineering tool for complex optical systems. In many instances it is important to optimize for both material and geometry configurations, which results in complex non-smooth search spaces with