ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy-Efficient Federated Edge Learning with Joint Communication and Computation Design

139   0   0.0 ( 0 )
 نشر من قبل Xiaopeng Mo
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper studies a federated edge learning system, in which an edge server coordinates a set of edge devices to train a shared machine learning model based on their locally distributed data samples. During the distributed training, we exploit the joint communication and computation design for improving the system energy efficiency, in which both the communication resource allocation for global ML parameters aggregation and the computation resource allocation for locally updating MLparameters are jointly optimized. In particular, we consider two transmission protocols for edge devices to upload ML parameters to edge server, based on the non orthogonal multiple access and time division multiple access, respectively. Under both protocols, we minimize the total energy consumption at all edge devices over a particular finite training duration subject to a given training accuracy, by jointly optimizing the transmission power and rates at edge devices for uploading MLparameters and their central processing unit frequencies for local update. We propose efficient algorithms to optimally solve the formulated energy minimization problems by using the techniques from convex optimization. Numerical results show that as compared to other benchmark schemes, our proposed joint communication and computation design significantly improves the energy efficiency of the federated edge learning system, by properly balancing the energy tradeoff between communication and computation.



قيم البحث

اقرأ أيضاً

Edge machine learning involves the deployment of learning algorithms at the network edge to leverage massive distributed data and computation resources to train artificial intelligence (AI) models. Among others, the framework of federated edge learni ng (FEEL) is popular for its data-privacy preservation. FEEL coordinates global model training at an edge server and local model training at edge devices that are connected by wireless links. This work contributes to the energy-efficient implementation of FEEL in wireless networks by designing joint computation-and-communication resource management ($text{C}^2$RM). The design targets the state-of-the-art heterogeneous mobile architecture where parallel computing using both a CPU and a GPU, called heterogeneous computing, can significantly improve both the performance and energy efficiency. To minimize the sum energy consumption of devices, we propose a novel $text{C}^2$RM framework featuring multi-dimensional control including bandwidth allocation, CPU-GPU workload partitioning and speed scaling at each device, and $text{C}^2$ time division for each link. The key component of the framework is a set of equilibriums in energy rates with respect to different control variables that are proved to exist among devices or between processing units at each device. The results are applied to designing efficient algorithms for computing the optimal $text{C}^2$RM policies faster than the standard optimization tools. Based on the equilibriums, we further design energy-efficient schemes for device scheduling and greedy spectrum sharing that scavenges spectrum holes resulting from heterogeneous $text{C}^2$ time divisions among devices. Using a real dataset, experiments are conducted to demonstrate the effectiveness of $text{C}^2$RM on improving the energy efficiency of a FEEL system.
We consider federated edge learning (FEEL) over wireless fading channels taking into account the downlink and uplink channel latencies, and the random computation delays at the clients. We speed up the training process by overlapping the communicatio n with computation. With fountain coded transmission of the global model update, clients receive the global model asynchronously, and start performing local computations right away. Then, we propose a dynamic client scheduling policy, called MRTP, for uploading local model updates to the parameter server (PS), which, at any time, schedules the client with the minimum remaining upload time. However, MRTP can lead to biased participation of clients in the update process, resulting in performance degradation in non-iid data scenarios. To overcome this, we propose two alternative schemes with fairness considerations, termed as age-aware MRTP (A-MRTP), and opportunistically fair MRTP (OF-MRTP). In A-MRTP, the remaining clients are scheduled according to the ratio between their remaining transmission time and the update age, while in OF-MRTP, the selection mechanism utilizes the long term average channel rate of the clients to further reduce the latency while ensuring fair participation of the clients. It is shown through numerical simulations that OF-MRTP provides significant reduction in latency without sacrificing test accuracy.
174 - Xiaowen Cao , Guangxu Zhu , Jie Xu 2021
This paper investigates the transmission power control in over-the-air federated edge learning (Air-FEEL) system. Different from conventional power control designs (e.g., to minimize the individual mean squared error (MSE) of the over-the-air aggrega tion at each round), we consider a new power control design aiming at directly maximizing the convergence speed. Towards this end, we first analyze the convergence behavior of Air-FEEL (in terms of the optimality gap) subject to aggregation errors at different communication rounds. It is revealed that if the aggregation estimates are unbiased, then the training algorithm would converge exactly to the optimal point with mild conditions; while if they are biased, then the algorithm would converge with an error floor determined by the accumulated estimate bias over communication rounds. Next, building upon the convergence results, we optimize the power control to directly minimize the derived optimality gaps under both biased and unbiased aggregations, subject to a set of average and maximum power constraints at individual edge devices. We transform both problems into convex forms, and obtain their structured optimal solutions, both appearing in a form of regularized channel inversion, by using the Lagrangian duality method. Finally, numerical results show that the proposed power control policies achieve significantly faster convergence for Air-FEEL, as compared with benchmark policies with fixed power transmission or conventional MSE minimization.
Edge machine learning involves the development of learning algorithms at the network edge to leverage massive distributed data and computation resources. Among others, the framework of federated edge learning (FEEL) is particularly promising for its data-privacy preservation. FEEL coordinates global model training at a server and local model training at edge devices over wireless links. In this work, we explore the new direction of energy-efficient radio resource management (RRM) for FEEL. To reduce devices energy consumption, we propose energy-efficient strategies for bandwidth allocation and scheduling. They adapt to devices channel states and computation capacities so as to reduce their sum energy consumption while warranting learning performance. In contrast with the traditional rate-maximization designs, the derived optimal policies allocate more bandwidth to those scheduled devices with weaker channels or poorer computation capacities, which are the bottlenecks of synchronized model updates in FEEL. On the other hand, the scheduling priority function derived in closed form gives preferences to devices with better channels and computation capacities. Substantial energy reduction contributed by the proposed strategies is demonstrated in learning experiments.
In federated learning (FL), reducing the communication overhead is one of the most critical challenges since the parameter server and the mobile devices share the training parameters over wireless links. With such consideration, we adopt the idea of SignSGD in which only the signs of the gradients are exchanged. Moreover, most of the existing works assume Channel State Information (CSI) available at both the mobile devices and the parameter server, and thus the mobile devices can adopt fixed transmission rates dictated by the channel capacity. In this work, only the parameter server side CSI is assumed, and channel capacity with outage is considered. In this case, an essential problem for the mobile devices is to select appropriate local processing and communication parameters (including the transmission rates) to achieve a desired balance between the overall learning performance and their energy consumption. Two optimization problems are formulated and solved, which optimize the learning performance given the energy consumption requirement, and vice versa. Furthermore, considering that the data may be distributed across the mobile devices in a highly uneven fashion in FL, a stochastic sign-based algorithm is proposed. Extensive simulations are performed to demonstrate the effectiveness of the proposed methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا