ﻻ يوجد ملخص باللغة العربية
The ground-based wide-angle camera array (GWAC) generates millions of single frame alerts per night. After the complicated and elaborate filters by multiple methods, a couple of dozens of candidates are still needed to be confirmed by follow-up observations in real-time. In order to free scientists from the complex and high-intensity follow-up tasks, we developed a Real-time Automatic transient Validation System (RAVS), and introduce here its system architecture, data processing flow, database schema, automatic follow-up control flow, and mobile message notification solution. This system is capable of automatically carrying out all operations in real-time without human intervention, including the validation of transient candidates, the adaptive light-curve sampling for identified targets in multi-band, and the pushing of observation results to the mobile client. The running of RAVS shows that an M-type stellar flare event can be well sampled by RAVS without a significant loss of the details, while the observing time is only less than one-third of the time coverage. Because the control logic of RAVS is designed to be independent of the telescope hardware, RAVS can be conveniently transplanted to other telescopes, especially the follow-up system of SVOM. Some future improvements are presented for the adaptive light-curve sampling, after taking into account both the brightness of sources and the evolution trends of the corresponding light-curves.
The observation of the transient sky through a multitude of astrophysical messengers hasled to several scientific breakthroughs these last two decades thanks to the fast evolution ofthe observational techniques and strategies employed by the astronom
The GWAC-N is an observation network composed of multi-aperture and multi-field of view robotic optical telescopes. The main instruments are the GWAC-A. Besides, several robotic optical telescopes with narrower field of views provide fast follow-up m
In this paper, we report the detection and follow-ups of a super stellar flare GWAC,181229A with an amplitude of $Delta Rsim$9.5 mag on a M9 type star by $text{SVOM/GWAC}$ and the dedicated follow-up telescopes. The estimated bolometric energy $E_{bo
Fast variability of optical objects is an interesting though poorly explored subject in modern astronomy. Real-time data processing and identification of transient celestial events in the images is very important for such study as it allows rapid fol
GWAC will have been built an integrated FOV of 5,000 $degree^2$ and have already built 1,800 square $degree^2$. The limit magnitude of a 10-second exposure image in the moonless night is 16R. In each observation night, GWAC produces about 0.7TB of ra