ﻻ يوجد ملخص باللغة العربية
KKMC-hh is a hadronic event generator for Z boson production and decays, which includes exponentiated multi-photon radiation and first-order electroweak corrections. We have used KKMC-hh to investigate the role of initial sate radiation (ISR) and initial-final interference (IFI) in precision electroweak analyses at the LHC. We compare the effect of this radiation on angular distributions and forward-backward asymmetry, which are particularly important for the measurement of the weak mixing angle. We discuss the relation of the ISR implementation in KKMC-hh to ISR from parton distribution functions with QED corrections.
Continuing with our investigations of the expected sizes of multiple photon radiative effects in heavy gauge boson production with decay to charged lepton pairs in the context of the precision physics of the LHC, using KK{MC}-hh 4.22 we consider IFI
We describe the program KKMC-hh, which calculates Z boson processes in hadronic collisions using coherent exclusive exponentiation (CEEX) with exact second-order photonic corrections at next-to-leading log and first-order weak vertex corrections, inc
We consider the implications of low-energy precision tests of parity violation on t-channel mediator models explaining the top AFB excess measured by CDF and D0. Flavor-violating u-t or d-t couplings of new scalar or vector mediators generate at one-
The future 100 TeV FCC-hh hadron collider will give access to rare but clean final states which are out of reach of the HL-LHC. One such process is the $Zh$ production channel in the $( ubar{ u} / ell^{+}ell^{-})gammagamma$ final states. We study the
${cal KK}$MC-hh is a precision event-generator for Z production and decay in hadronic collisions, which applies amplitude-level resummation to both initial and final state photon radiation, including perturbative residuals exact through ${cal O}(alph