ﻻ يوجد ملخص باللغة العربية
In a quantum money scheme, a bank can issue money that users cannot counterfeit. Similar to bills of paper money, most quantum money schemes assign a unique serial number to each money state, thus potentially compromising the privacy of the users of quantum money. However in a quantum coins scheme, just like the traditional currency coin scheme, all the money states are exact copies of each other, providing a better level of privacy for the users. A quantum money scheme can be private, i.e., only the bank can verify the money states, or public, meaning anyone can verify. In this work, we propose a way to lift any private quantum coin scheme -- which is known to exist based on the existence of one-way functions, due to Ji, Liu, and Song (CRYPTO18) -- to a scheme that closely resembles a public quantum coin scheme. Verification of a new coin is done by comparing it to the coins the user already possesses, by using a projector on to the symmetric subspace. No public coin scheme was known prior to this work. It is also the first construction that is very close to a public quantum money scheme and is provably secure based on standard assumptions. The lifting technique when instantiated with the private quantum coins scheme, due to Mosca and Stebila 2010, gives rise to the first construction that is very close to an inefficient unconditionally secure public quantum money scheme.
One of the earliest cryptographic applications of quantum information was to create quantum digital cash that could not be counterfeited. In this paper, we describe a new type of quantum money: quantum coins, where all coins of the same denomination
Non-malleability is an important security property for public-key encryption (PKE). Its significance is due to the fundamental unachievability of integrity and authenticity guarantees in this setting, rendering it the strongest integrity-like propert
One crucial step in any quantum key distribution (QKD) scheme is parameter estimation. In a typical QKD protocol the users have to sacrifice part of their raw data to estimate the parameters of the communication channel as, for example, the error rat
The dimensionality of the internal coin space of discrete-time quantum walks has a strong impact on the complexity and richness of the dynamics of quantum walkers. While two-dimensional coin operators are sufficient to define a certain range of dynam
Quantum computing technologies pose a significant threat to the currently employed public-key cryptography protocols. In this paper, we discuss the impact of the quantum threat on public key infrastructures (PKIs), which are used as a part of securit