ﻻ يوجد ملخص باللغة العربية
High order perturbation theory has seen an unexpected recent revival for controlled calculations of quantum many-body systems, even at strong coupling. We adapt integration methods using low-discrepancy sequences to this problem. They greatly outperform state-of-the-art diagrammatic Monte Carlo. In practical applications, we show speed-ups of several orders of magnitude with scaling as fast as $1/N$ in sample number $N$; parametrically faster than $1/sqrt{N}$ in Monte Carlo. We illustrate our technique with a solution of the Kondo ridge in quantum dots, where it allows large parameter sweeps.
We use the stochastic series expansion quantum Monte Carlo method, together with the eigenstate-to-Hamiltonian mapping approach, to map the localized ground states of the disordered two-dimensional Heisenberg model, to excited states of a target Hami
We extend the recently developed Quantum Quasi-Monte Carlo (QQMC) approach to obtain the full frequency dependence of Green functions in a single calculation. QQMC is a general approach for calculating high-order perturbative expansions in power of t
We propose a novel approach to nonequilibrium real-time dynamics of quantum impurities models coupled to biased non-interacting leads, such as those relevant to quantum transport in nanoscale molecular devices. The method is based on a Diagrammatic M
We present a method for calculating the time-dependent many-body wavefunction that follows a local quench. We apply the method to the voltage-driven nonequilibrium Kondo model to find the exact time-evolving wavefunction following a quench where the
We extend the general formalism discussed in the previous paper [A. B. Culver and N. Andrei, Phys. Rev. B 103, 195106 (2021)] to two models with charge fluctuations: the interacting resonant level model and the Anderson impurity model. In the interac