ﻻ يوجد ملخص باللغة العربية
Strongly correlated phases of matter are often described in terms of straightforward electronic patterns. This has so far been the basis for studying the Fermi-Hubbard model realized with ultracold atoms. Here, we show that artificial intelligence (AI) can provide an unbiased alternative to this paradigm for phases with subtle, or even unknown, patterns. Long- and short-range spin correlations spontaneously emerge in filters of a convolutional neural network trained on snapshots of single atomic species. In the less well-understood strange metallic phase of the model, we find that a more complex network trained on snapshots of local moments produces an effective order parameter for the non-Fermi-liquid behavior. Our technique can be employed to characterize correlations unique to other phases with no obvious order parameters or signatures in projective measurements, and has implications for science discovery through AI beyond strongly correlated systems.
Disorder-free localization has recently emerged as a mechanism for ergodicity breaking in homogeneous lattice gauge theories. In this work we show that this mechanism can lead to unconventional states of quantum matter as the absence of thermalizatio
We study the phase diagram of the two-dimensional repulsive Hubbard model with spin-dependent anisotropic hopping at half-filling. The system develops Ising antiferromagnetic long-range order already at infinitesimal repulsive interaction strength in
We show that the numerically exact bold-line diagrammatic theory for the $2d$ Hubbard model exhibits a non-Fermi-liquid (NFL) strange metal state, which is connected to the SYK NFL in the strong-interaction limit. The solution for the doped system fe
The repulsive Fermi Hubbard model on the square lattice has a rich phase diagram near half-filling (corresponding to the particle density per lattice site $n=1$): for $n=1$ the ground state is an antiferromagnetic insulator, at $0.6 < n lesssim 0.8$,
Strange or bad metallic transport, defined by its incompatibility with conventional quasiparticle pictures, is a theme common to strongly correlated materials and ubiquitous in many high temperature superconductors. The Hubbard model represents a min