ترغب بنشر مسار تعليمي؟ اضغط هنا

Information Spreading Dynamics on Adaptive Social Networks

100   0   0.0 ( 0 )
 نشر من قبل Xiu-Xiu Zhan
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

There is currently growing interest in modeling the information diffusion on social networks across multi-disciplines. The majority of the corresponding research has focused on information diffusion independently, ignoring the network evolution in the diffusion process. Therefore, it is more reasonable to describe the real diffusion systems by the co-evolution between network topologies and information states. In this work, we propose a mechanism considering the coevolution between information states and network topology simultaneously, in which the information diffusion was executed as an SIS process and network topology evolved based on the adaptive assumption. The theoretical analyses based on the Markov approach were very consistent with simulation. Both simulation results and theoretical analyses indicated that the adaptive process, in which informed individuals would rewire the links between the informed neighbors to a random non-neighbor node, can enhance information diffusion (leading to much broader spreading). In addition, we obtained that two threshold values exist for the information diffusion on adaptive networks, i.e., if the information propagation probability is less than the first threshold, information cannot diffuse and dies out immediately; if the propagation probability is between the first and second threshold, information will spread to a finite range and die out gradually; and if the propagation probability is larger than the second threshold, information will diffuse to a certain size of population in the network. These results may shed some light on understanding the co-evolution between information diffusion and network topology.



قيم البحث

اقرأ أيضاً

can evolve simultaneously. For the information-driven adaptive process, susceptible (infected) individuals who have abilities to recognize the disease would break the links of their infected (susceptible) neighbors to prevent the epidemic from furthe r spreading. Simulation results and numerical analyses based on the pairwise approach indicate that the information-driven adaptive process can not only slow down the speed of epidemic spreading, but can also diminish the epidemic prevalence at the final state significantly. In addition, the disease spreading and information diffusion pattern on the lattice give a visual representation about how the disease is trapped into an isolated field with the information-driven adaptive process. Furthermore, we perform the local bifurcation analysis on four types of dynamical regions, including healthy, oscillatory, bistable and endemic, to understand the evolution of the observed dynamical behaviors. This work may shed some lights on understanding how information affects human activities on responding to epidemic spreading.
Recently, information transmission models motivated by the classical epidemic propagation, have been applied to a wide-range of social systems, generally assume that information mainly transmits among individuals via peer-to-peer interactions on soci al networks. In this paper, we consider one more approach for users to get information: the out-of-social-network influence. Empirical analyses of eight typical events diffusion on a very large micro-blogging system, emph{Sina Weibo}, show that the external influence has significant impact on information spreading along with social activities. In addition, we propose a theoretical model to interpret the spreading process via both internal and external channels, considering three essential properties: (i) memory effect; (ii) role of spreaders; and (iii) non-redundancy of contacts. Experimental and mathematical results indicate that the information indeed spreads much quicker and broader with mutual effects of the internal and external influences. More importantly, the present model reveals that the event characteristic would highly determine the essential spreading patterns once the network structure is established. The results may shed some light on the in-depth understanding of the underlying dynamics of information transmission on real social networks.
Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using a static, structurally realistic social network as a platform for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is.
171 - Sen Pei , Hernan A. Makse 2013
Searching for influential spreaders in complex networks is an issue of great significance for applications across various domains, ranging from the epidemic control, innovation diffusion, viral marketing, social movement to idea propagation. In this paper, we first display some of the most important theoretical models that describe spreading processes, and then discuss the problem of locating both the individual and multiple influential spreaders respectively. Recent approaches in these two topics are presented. For the identification of privileged single spreaders, we summarize several widely used centralities, such as degree, betweenness centrality, PageRank, k-shell, etc. We investigate the empirical diffusion data in a large scale online social community -- LiveJournal. With this extensive dataset, we find that various measures can convey very distinct information of nodes. Of all the users in LiveJournal social network, only a small fraction of them involve in spreading. For the spreading processes in LiveJournal, while degree can locate nodes participating in information diffusion with higher probability, k-shell is more effective in finding nodes with large influence. Our results should provide useful information for designing efficient spreading strategies in reality.
We introduce a general stochastic model for the spread of rumours, and derive mean-field equations that describe the dynamics of the model on complex social networks (in particular those mediated by the Internet). We use analytical and numerical solu tions of these equations to examine the threshold behavior and dynamics of the model on several models of such networks: random graphs, uncorrelated scale-free networks and scale-free networks with assortative degree correlations. We show that in both homogeneous networks and random graphs the model exhibits a critical threshold in the rumour spreading rate below which a rumour cannot propagate in the system. In the case of scale-free networks, on the other hand, this threshold becomes vanishingly small in the limit of infinite system size. We find that the initial rate at which a rumour spreads is much higher in scale-free networks than in random graphs, and that the rate at which the spreading proceeds on scale-free networks is further increased when assortative degree correlations are introduced. The impact of degree correlations on the final fraction of nodes that ever hears a rumour, however, depends on the interplay between network topology and the rumour spreading rate. Our results show that scale-free social networks are prone to the spreading of rumours, just as they are to the spreading of infections. They are relevant to the spreading dynamics of chain emails, viral advertising and large-scale information dissemination algorithms on the Internet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا