ﻻ يوجد ملخص باللغة العربية
By throwing a test charged particle into a Reissner-Nordstrom (RN) black hole, we test the validity of the first and second laws of thermodynamics and weak cosmic censorship conjecture (WCCC) with two types of boundary conditions, i.e., the asymptotically anti-de Sitter (AdS) space and a Dirichlet cavity wall placed in the asymptotically at space. For the RN-AdS black hole, the second law of thermodynamics is satisfied, and the WCCC is violated for both extremal and nearextremal black holes. For the RN black hole in a cavity, the entropy can either increase or decrease depending on the change in the charge, and WCCC is satisfied/violated for the extremal/nearextremal black hole. Our results indicate that there may be a connection between the black hole thermodynamics and the boundary condition imposed on the black hole.
The weak cosmic censorship conjecture in the near-extremal BTZ black hole has been tested by the test particles and fields. It was claimed that this black hole could be overspun. In this paper, we review the thermodynamics and weak cosmic censorship
In this paper, we analytically study the critical exponents and universal amplitudes of the thermodynamic curvatures such as the intrinsic and extrinsic curvature at the critical point of the small-large black hole phase transition for the charged Ad
Recently, the phase space of black holes in a spherical cavity of radius $r_{B}$ has been extended by introducing a thermodynamic volume $Vequiv4pi r_{B}^{3}/3$. In the extended phase space, we consider the thermodynamic geometry, which provides a po
It has been shown recently that the strong cosmic censorship conjecture is violated by near-extremal Reissner-Nordstrom-de Sitter black holes. We investigate whether the introduction of a charged scalar field can rescue strong cosmic censorship. We f
Treating the cosmological constant as a dynamical variable, we investigate the thermodynamics and weak cosmic censorship conjecture (WCCC) of a charged AdS black hole (BH) in the Rastall gravity. We determine the energy momentum relation of charged f