ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunable nonlinear spectra of anti-directional couplers

73   0   0.0 ( 0 )
 نشر من قبل Arjunan Govindarajan
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We produce transmission and reflection spectra of the anti-directional coupler (ADC) composed of linearly-coupled positive- and negative-refractive-index arms, with intrinsic Kerr nonlinearity. Both reflection and transmission feature two highly amplified peaks at two distinct wavelengths in a certain range of values of the gain, making it possible to design a wavelength-selective mode-amplification system. We also predict that a blend of gain and loss in suitable proportions can robustly enhance reflection spectra which are detrimentally affected by the attenuation, in addition to causing red and blue shifts owing to the Kerr effect. In particular, ADC with equal gain and loss coefficients, is considered in necessary detail.



قيم البحث

اقرأ أيضاً

Following the concept of $mathcal{PT}$-symmetric couplers, we propose a linearly coupled system of nonlinear waveguides, made of positive- and negative-index materials, which carry, respectively, gain and loss. We report novel bi- and multi-stability states pertaining to transmitted and reflective intensities, which are controlled by the ratio of the gain and loss coefficients, and phase mismatch between the waveguides. These states offer transmission regimes with extremely low threshold intensities for transitions between coexisting states, and very large amplification ratio between the input and output intensities leading to an efficient way of controlling light with light.
166 - Rodislav Driben , 2011
Families of analytical solutions are found for symmetric and antisymmetric solitons in the dual-core system with the Kerr nonlinearity and PT-balanced gain and loss. The crucial issue is stability of the solitons. A stability region is obtained in an analytical form, and verified by simulations, for the PT-symmetric solitons. For the antisymmetric ones, the stability border is found in a numerical form. Moving solitons of both types collide elastically. The two soliton species merge into one in the supersymmetric case, with equal coefficients of the gain, loss and inter-core coupling. These solitons feature a subexponential instability, which may be suppressed by periodic switching (management).
We reveal a generic connection between the effect of time-reversals and nonlinear wave dynamics in systems with parity-time (PT) symmetry, considering a symmetric optical coupler with balanced gain and loss where these effects can be readily observed experimentally. We show that for intensities below a threshold level, the amplitudes oscillate between the waveguides, and the effects of gain and loss are exactly compensated after each period due to {periodic time-reversals}. For intensities above a threshold level, nonlinearity suppresses periodic time-reversals leading to the symmetry breaking and a sharp beam switching to the waveguide with gain. Another nontrivial consequence of linear PT-symmetry is that the threshold intensity remains the same when the input intensities at waveguides with loss and gain are exchanged.
We introduce the concept of nonlinear graphene metasurfaces employing the controllable interaction between a graphene layer and a planar metamaterial. Such hybrid metasurfaces support two types of subradiant resonant modes, asymmetric modes of struct ured metamaterial elements (metamolecules) and graphene plasmons exhibiting strong mutual coupling and avoided dispersion crossing. High tunability of graphene plasmons facilitates strong interaction between the subradiant modes, modifying the spectral position and lifetime of the associated Fano resonances. We demonstrate that strong resonant interaction, combined with the subwavelength localization of plasmons, leads to the enhanced nonlinear response and high efficiency of the second-harmonic generation.
Ring dark and anti-dark solitons in nonlocal media are found. These structures have, respectively, the form of annular dips or humps on top of a stable continuous-wave background, and exist in a weak or strong nonlocality regime, defined by the sign of a characteristic parameter. It is demonstrated analytically that these solitons satisfy an effective cylindrical Kadomtsev-Petviashvilli (aka Johnsons) equation and, as such, can be written explicitly in closed form. Numerical simulations show that they propagate undistorted and undergo quasi-elastic collisions, attesting to their stability properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا