ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconstruction of effective potential from statistical analysis of dynamic trajectories

380   0   0.0 ( 0 )
 نشر من قبل Ali Yousefzadi Nobakht
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The broad incorporation of microscopic methods is yielding a wealth of information on atomic and mesoscale dynamics of individual atoms, molecules, and particles on surfaces and in open volumes. Analysis of such data necessitates statistical frameworks to convert observed dynamic behaviors to effective properties of materials. Here we develop a method for stochastic reconstruction of effective acting potentials from observed trajectories. Using the Silicon vacancy defect in graphene as a model, we develop a statistical framework to reconstruct the free energy landscape from calculated atomic displacements.



قيم البحث

اقرأ أيضاً

The convergent beam electron diffraction (CBED) patterns of twisted bilayer samples exhibit interference patterns in their CBED spots. Such interference patterns can be treated as off-axis holograms and the phase of the scattered waves, meaning the i nterlayer distance can be reconstructed. A detailed protocol of the reconstruction procedure is provided in this study. In addition, we derive an exact formula for reconstructing the interlayer distance from the recovered phase distribution, which takes into account the different chemical compositions of the individual monolayers. It is shown that one interference fringe in a CBED spot is sufficient to reconstruct the distance between the layers, which can be practical for imaging samples with a relatively small twist angle or when probing small sample regions. The quality of the reconstructed interlayer distance is studied as a function of the twist angle. At smaller twist angles, the reconstructed interlayer distance distribution is more precise and artefact free. At larger twist angles, artefacts due to the moire structure appear in the reconstruction. A method for the reconstruction of the average interlayer distance is presented. As for resolution, the interlayer distance can be reconstructed by the holographic approach at an accuracy of 0.5 A, which is a few hundred times better than the intrinsic z-resolution of diffraction limited resolution, as expressed through the spread of the measured k-values. Moreover, we show that holographic CBED imaging can detect variations as small as 0.1 A in the interlayer distance, though the quantitative reconstruction of such variations suffers from large errors.
The role of the interface potential on the effective mass of charge carriers is elucidated in this work. We develop a new theoretical formalism using a spatially dependent effective mass that is related to the magnitude of the interface potential. Us ing this formalism we studied Ge quantum dots (QDs) formed by plasma enhanced chemical vapour deposition (PECVD) and co-sputtering (sputter). These samples allowed us to isolate important consequences arising from differences in the interface potential. We found that for a higher interface potential, as in the case of PECVD QDs, there is a larger reduction in the effective mass, which increases the confinement energy with respect to the sputter sample. We further understood the action of O interface states by comparing our results with Ge QDs grown by molecular beam epitaxy. It is found that the O states can suppress the influence of the interface potential. From our theoretical formalism we determine the length scale over which the interface potential influences the effective mass.
First-principles density functional theory methods are used to investigate the structure, energetics, and vibrational motions of the neutral vacancy defect in diamond. The measured optical absorption spectrum demonstrates that the tetrahedral $T_d$ p oint group symmetry of pristine diamond is maintained when a vacancy defect is present. This is shown to arise from the presence of a dynamic Jahn-Teller distortion that is stabilised by large vibrational anharmonicity. Our calculations further demonstrate that the dynamic Jahn-Teller-distorted structure of $T_d$ symmetry is lower in energy than the static Jahn-Teller distorted tetragonal $D_{2d}$ vacancy defect, in agreement with experimental observations. The tetrahedral vacancy structure becomes more stable with respect to the tetragonal structure by increasing temperature. The large anharmonicity arises mainly from quartic vibrations, and is associated with a saddle point of the Born-Oppenheimer surface and a minimum in the free energy. This study demonstrates that the behaviour of Jahn-Teller distortions of point defects can be calculated accurately using anharmonic vibrational methods. Our work will open the way for first-principles treatments of dynamic Jahn-Teller systems in condensed matter.
Single GaN nanowires formed spontaneously on a given substrate represent nanoscopic single crystals free of any extended defects. However, due to the high area density of thus formed GaN nanowire ensembles, individual nanowires coalesce with others i n their immediate vicinity. This coalescence process may introduce strain and structural defects, foiling the idea of defect-free material due to the nanowire geometry. To investigate the consequences of this process, a quantitative measure of the coalescence of nanowire ensembles is required. We derive objective criteria to determine the coalescence degree of GaN nanowire ensembles. These criteria are based on the area-perimeter relationship of the cross-sectional shapes observed, and in particular on their circularity. Employing these criteria, we distinguish single nanowires from coalesced aggregates in an ensemble, determine the diameter distribution of both, and finally analyze the coalescence degree of nanowire ensembles with increasing fill factor.
109 - Jiabin Yu , Zhi-Da Song , 2020
Gapless criteria that can efficiently determine whether a crystal is gapless or not are particularly useful for identifying topological semimetals. In this work, we propose a sufficient gapless criterion for three-dimensional non-interacting crystals , based on the simplified expressions for the bulk average value of the static axion field. The brief logic is that two different simplified expressions give the same value in an insulator, and thus the gapless phase can be detected by the mismatch of them. We demonstrate the effectiveness of the gapless criterion in the magnetic systems with space groups 26 and 13, where mirror, glide, and inversion symmetries provide the simplified expressions. In particular, the gapless criterion can identify gapless phases that are missed by the symmetry representation approach, as illustrated by space group 26. Our proposal serves as a guiding principle for future discovery of topological semimetals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا