ترغب بنشر مسار تعليمي؟ اضغط هنا

The persistent radio jet coupled to hard X-rays in the soft state of Cyg X-1

119   0   0.0 ( 0 )
 نشر من قبل Andrzej A. Zdziarski
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study long-term radio/X-ray correlations in Cyg X-1. We find the persistent existence of a compact radio jet in its soft state. This represents a new phenomenon in black-hole binaries, in addition to compact jets in the hard state and episodic ejections of ballistic blobs in the intermediate state. While the radio emission in the hard state is strongly correlated with both the soft and hard X-rays, the radio flux in the soft state is not directly correlated with the flux of the dominant disk blackbody in soft X-rays, but instead it is lagged by about a hundred days. We interpret the lag as occurring in the process of advection of the magnetic flux from the donor through the accretion disk. On the other hand, the soft-state radio flux is very tightly correlated with the hard X-ray, 15--50 keV, flux without a measurable lag and at the same rms. This implies that the X-ray emitting disk corona and the soft-state jet are powered by the same process, probably magnetically.



قيم البحث

اقرأ أيضاً

We study the radio/X-ray correlation in Cyg X-3. It has been known that the soft and hard X-ray fluxes in the hard spectral state are correlated positively and negatively, respectively, with the radio flux. We show that this implies that the observed $sim$1--100 keV flux (which is a fair approximation to the bolometric flux) is completely uncorrelated with the radio flux. We can recover a positive correlation (seen in other sources and expected theoretically) if the soft X-rays are strongly absorbed by a local medium. Then, however, the intrinsic X-ray spectrum of Cyg X-3 in its hard state becomes relatively soft, similar to that of an intermediate spectral state of black-hole binaries, but not to their true hard state. We also find the radio spectra in the hard state of Cyg X-3 are hard on average, and the flux distributions of the radio emission and soft X-rays can be described by sums of two log-normal functions. We compare Cyg X-3 with other X-ray binaries using colour-colour, colour-Eddington ratio and Eddington ratio-radio flux diagrams. We find Cyg X-3 to be spectrally most similar to GRS 1915+105, except that Cyg X-3 is substantially more radio loud, which appears to be due to its jet emission enhanced by interaction with the powerful stellar wind from the Wolf-Rayet donor.
The black hole binary Cygnus X-1 has a 5.6 day orbital period. We first detected a clear intensity modulation with the orbital period in its high/soft state with 6 year MAXI data, as well as in its low/hard state. In the low/hard state, the folded li ght curves showed an intensity drop at the superior conjunction of the black hole by a modulation factor (MF), which is the amplitude divided by the average, with 8+-1%, 4+-1% and 3+-2% for 2-4 keV, 4-10 and 10-20 keV bands, showing a spectral hardening at the superior conjunction of the black hole. Spectral analysis with a model consisting of a power law and a photoelectric absorption, showed that the hydrogen column density increased from (2.9+-0.4)E+21 to (4.7+-1.1)E+21 cm^-2 around the superior conjunction, although more complex spectral variation, such as a partial absorption, was suggested, and the flux of the power law component decreased with 6+-1%. On the other hand, the MFs of the folded light curves in the high/soft state, were 4+-1% and 4+-2% for 2-4 keV and 4-10 keV bands, respectively. We applied a model consisting of a power law and a diskblackbody with a photoelectric absorption and found a modulation of the flux of the power law component with 7+-5% in MF, while the modulation of the hydrogen column density was less than 1E+21 cm^-2. These results can be interpreted as follows; the modulation of both states can be mainly explained by scattering of the X-rays by an ionized stellar wind, but only at the superior conjunction in the low/hard state, a large photoelectric absorption appears, because of a low ionization state of the wind in the line of sight at the phase. Such a condition can be established by reasonable parameters of an in-homogeneous wind and the observed luminosities.
We present evidence for the presence of a weak compact jet during a soft X-ray state of Cygnus X-1. Very-high-resolution radio observations were taken with the VLBA, EVN and MERLIN during a hard-to-soft spectral state change, showing the hard state j et to be suppressed by a factor of about 3-5 in radio flux and unresolved to direct imaging observations (i.e. < 1 mas at 4 cm). High time-resolution X-ray observations with the RXTE-PCA were also taken during the radio monitoring period, showing the source to make the transition from the hard state to a softer state (via an intermediate state), although the source may never have reached the canonical soft state. Using astrometric VLBI analysis and removing proper motion, parallax and orbital motion signatures, the residual positions show a scatter of ~0.2 mas (at 4 cm) and ~3 mas (at 13 cm) along the position angle of the known jet axis; these residuals suggest there is a weak unresolved outflow, with varying size or opacity, during intermediate and soft X-ray states. Furthermore, no evidence was found for extended knots or shocks forming within the jet during the state transition, suggesting the change in outflow rate may not be sufficiently high to produce superluminal knots.
Cygnus X-1 is a high-mass x-ray binary with a black hole compact object. It is normally extremely bright in hard x-rays and low energy gamma rays and resides in the canonical hard spectral state. Recently, however, Cyg X-1 made a transition to the ca nonical soft state, with a rise in the soft x-ray flux and a decrease in the flux in the hard x-ray and low energy gamma-ray energy bands. We have been using the Gamma-Ray Burst Monitor on Fermi to monitor the fluxes of a number of sources in the 8--1000 keV energy range, including Cyg X-1. We present light curves of Cyg X-1 showing the flux decrease in hard x-ray and low energy gamma-ray energy bands during the state transition as well as the several long flares observed in these higher energies during the soft state. We also present preliminary spectra from GBM for the pre-transition state, showing the spectral evolution to the soft state, and the post-transition state.
A number of radio galaxies has been detected by Fermi/LAT in the gamma-ray domain. In some cases, like Cen A and M 87, these objects have been seen even in the TeV range by Cherenkov telescopes. Whereas the gamma-ray emission is likely to be connecte d with the non-thermal jet emission, dominating also the radio band, the situation is less clear at hard X-rays. While the smoothly curved continuum emission and the overall spectral energy distribution indicate a non-thermal emission, other features such as the iron line emission and the low variability appear to be rather of Seyfert type, i.e. created in the accretion disk and corona around the central black hole. We investigate several prominent cases using combined X-ray and gamma-ray data in order to constrain the possible contributions of the jet and the accretion disk to the overall spectral energy distribution in radio galaxies. Among the three sources we study, three different origins of the hard X-ray flux can be identified. The emission can be purely non-thermal and caused by the jet, as in the case of M 87, or thermal inverse Compton emission from the Seyfert type core (Cen A), or appears to be a superposition of non-thermal and thermal inverse Compton emission, as we observe in 3C 111. Gamma-ray bright radio galaxies host all kinds of AGN cores, Seyfert 1 and 2, BL Lac objects, and also LINER.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا