ترغب بنشر مسار تعليمي؟ اضغط هنا

A multi-layer network approach to modelling authorship influence on citation dynamics in physics journals

178   0   0.0 ( 0 )
 نشر من قبل Frank Schweitzer
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide a general framework to model the growth of networks consisting of different coupled layers. Our aim is to estimate the impact of one such layer on the dynamics of the others. As an application, we study a scientometric network, where one layer consists of publications as nodes and citations as links, whereas the second layer represents the authors. This allows to address the question how characteristics of authors, such as their number of publications or number of previous co-authors, impacts the citation dynamics of a new publication. To test different hypotheses about this impact, our model combines citation constituents and social constituents in different ways. We then evaluate their performance in reproducing the citation dynamics in nine different physics journals. For this, we develop a general method for statistical parameter estimation and model selection that is applicable to growing multi-layer networks. It takes both the parameter errors and the model complexity into account and is computationally efficient and scalable to large networks.



قيم البحث

اقرأ أيضاً

135 - A.P. Masucci 2011
In this work we consider the topological analysis of symbolic formal systems in the framework of network theory. In particular we analyse the network extracted by Principia Mathematica of B. Russell and A.N. Whitehead, where the vertices are the stat ements and two statements are connected with a directed link if one statement is used to demonstrate the other one. We compare the obtained network with other directed acyclic graphs, such as a scientific citation network and a stochastic model. We also introduce a novel topological ordering for directed acyclic graphs and we discuss its properties in respect to the classical one. The main result is the observation that formal systems of knowledge topologically behave similarly to self-organised systems.
One can point to a variety of historical milestones for gender equality in STEM (science, technology, engineering, and mathematics), however, practical effects are incremental and ongoing. It is important to quantify gender differences in subdomains of scientific work in order to detect potential biases and monitor progress. In this work, we study the relevance of gender in scientific collaboration patterns in the Institute for Operations Research and the Management Sciences (INFORMS), a professional society with sixteen peer-reviewed journals. Using their publication data from 1952 to 2016, we constructed a large temporal bipartite network between authors and publications, and augmented the author nodes with gender labels. We characterized differences in several basic statistics of this network over time, highlighting how they have changed with respect to relevant historical events. We find a steady increase in participation by women (e.g., fraction of authorships by women and of new women authors) starting around 1980. However, women still comprise less than 25% of the INFORMS society and an even smaller fraction of authors with many publications. Moreover, we describe a methodology for quantifying the structural role of an authorship with respect to the overall connectivity of the network, using it to measure subtle differences between authorships by women and by men. Specifically, as measures of structural importance of an authorship, we use effective resistance and contraction importance, two measures related to diffusion throughout a network. As a null model, we propose a degree-preserving temporal and geometric network model with emergent communities. Our results suggest the presence of systematic differences between the collaboration patterns of men and women that cannot be explained by only local statistics.
390 - Liubov Tupikina 2017
Here we developed a new conceptual, stochastic Heterogeneous Opinion-Status model (HOpS model), which is adaptive network model. The HOpS model admits to identify the main attributes of dynamics on networks and to study analytically the relation betw een topological network properties and processes taking place on a network. Another key point of the HOpS model is the possibility to study network dynamics via the novel parameter of heterogeneity. We show that not only clear topological network properties, such as node degree, but also, the nodes status distribution (the factor of network heterogeneity) play an important role in so-called opinion spreading and information diffusion on a network. This model can be potentially used for studying the co-evolution of globally aggregated or averaged key observables of the earth system. These include natural variables such as atmospheric, oceanic and land carbon stocks, as well as socio-economic quantities such as global human population, economic production or wellbeing.
With great theoretical and practical significance, identifying the node spreading influence of complex network is one of the most promising domains. So far, various topology-based centrality measures have been proposed to identify the node spreading influence in a network. However, the node spreading influence is a result of the interplay between the network topology structure and spreading dynamics. In this paper, we build up the systematic method by combining the network structure and spreading dynamics to identify the node spreading influence. By combining the adjacent matrix $A$ and spreading parameter $beta$, we theoretical give the node spreading influence with the eigenvector of the largest eigenvalue. Comparing with the Susceptible-Infected-Recovered (SIR) model epidemic results for four real networks, our method could identify the node spreading influence more accurately than the ones generated by the degree, K-shell and eigenvector centrality. This work may provide a systematic method for identifying node spreading influence.
Whether a scientific paper is cited is related not only to the influence of its author(s) but also to the journal publishing it. Scientists, either proficient or tender, usually submit their most important work to prestigious journals which receives higher citations than the ordinary. How to model the role of scientific journals in citation dynamics is of great importance. In this paper we address this issue through two folds. One is the intrinsic heterogeneity of a paper determined by the impact factor of the journal publishing it. The other is the mechanism of a paper being cited which depends on its citations and prestige. We develop a model for citation networks via an intrinsic nodal weight function and an intuitive ageing mechanism. The nodes weight is drawn from the distribution of impact factors of journals and the ageing transition is a function of the citation and the prestige. The node-degree distribution of resulting networks shows nonuniversal scaling: the distribution decays exponentially for small degree and has a power-law tail for large degree, hence the dual behaviour. The higher the impact factor of the journal, the larger the tipping point and the smaller the power exponent that are obtained. With the increase of the journal rank, this phenomenon will fade and evolve to pure power laws.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا