ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining visible neutrino decay at KamLAND and JUNO

80   0   0.0 ( 0 )
 نشر من قبل Suprabh Prakash
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study visible neutrino decay at the reactor neutrino experiments KamLAND and, JUNO. Assuming the Majoron model of neutrino decay, we obtain constraints on the couplings between Majoron and neutrino as well as on the lifetime/mass of the most massive neutrino state i.e., $tau_{3} / m_{3}$ or $tau_{2} / m_{2}$, respectively, for the normal or the inverted mass orderings. We obtain the constraints on the lifetime $tau_{2} / m_{2} geq 1.4 times 10^{-9}~rm{s/eV}$ in the inverted mass ordering for both KamLAND and JUNO at 90% CL. In the normal ordering in which the bound can be obtained for JUNO only, the constraint is milder than the inverted ordering case, $tau_{3} / m_{3} geq 1.0 times 10^{-10}~rm{s/eV}$ at 90% CL. We find that the dependence of lightest neutrino mass ($=m_{rm{lightest}}$), $m_1 (m_3)$ for the normal (inverted) mass ordering, on the constraints for the different types of couplings (scalar or pseudo-scalar) is rather strong, but the $m_{rm{lightest}}$ dependence on the lifetime/mass bound is only modest.



قيم البحث

اقرأ أيضاً

If the heaviest neutrino mass eigenstate is unstable, its decay modes could include lighter neutrino eigenstates. In this case part of the decay products could be visible, as they would interact at neutrino detectors via mixing. At neutrino oscillati on experiments, a characteristic signature of such emph{visible neutrino decay} would be an apparent excess of events at low energies. We focus on a simple phenomenological model in which the heaviest neutrino decays as $ u_3 rightarrow u_{1,2} + phi$, where $phi$ is a new light scalar. If neutrinos are Majorana particles the helicity-flipping decays would be observable (i.e., $ u to bar u + phi$), leading to interesting observable consequences on the event rates. We compute the sensitivities of the Deep Underground Neutrino Experiment (DUNE) to the couplings of the new scalar as a function of the lightest neutrino mass. Under the assumption that only the heaviest neutrino is unstable, and for a normal mass ordering, we find that DUNE will be sensitive to values of $tau_3/m_3 > 1.95 - 2.6times 10^{-10}$~s/eV (90% C.L.) (depending on the lightest neutrino mass), where $tau_3$ and $m_3$ are the lifetime and mass of $ u_3$, respectively.
Several theories of particle physics beyond the Standard Model consider that neutrinos can decay. In this work we assume that the standard mechanism of neutrino oscillations is altered by the decay of the heaviest neutrino mass state into a sterile n eutrino and, depending on the model, a scalar or a Majoron. We study the sensitivity of the forthcoming KM3NeT-ORCA experiment to this scenario and find that it could improve the current bounds coming from oscillation experiments, where three-neutrino oscillations have been considered, by roughly two orders of magnitude. We also study how the presence of this neutrino decay can affect the determination of the atmospheric oscillation parameters $sin^2theta_{23}$ and $Delta m_{31}^2$, as well as the sensitivity to the neutrino mass ordering.
We do a re-analysis to asses the impact of the results of the Borexino experiment and the recent 2.8 KTy KamLAND data on the solar neutrino oscillation parameters. The current Borexino results are found to have no impact on the allowed solar neutrino parameter space. The new KamLAND data causes a significant reduction of the allowed range of $Delta m^2_{21}$, determining it with an unprecedented precision of 8.3% at 3$sigma$. The precision of $Delta m^2_{21}$ is controlled practically by the KamLAND data alone. Inclusion of new KamLAND results also improves the upper bound on $sin^2theta_{12}$, but the precision of this parameter continues to be controlled by the solar data. The third mixing angle is constrained to be $sin^2theta_{13} < 0.063$ at $3sigma$ from a combined fit to the solar, KamLAND, atmospheric and CHOOZ results. We also address the issue of how much further reduction of allowed range of $Delta m^2_{21}$ and $sin^2theta_{12}$ is possible with increased statistics from KamLAND. We find that there is a sharp reduction of the $3sigma$ ``spread with enhanced statistics till about 10 KTy after which the spread tends to flatten out reaching to less than 4% with 15 KTy data. For $sin^2theta_{12}$ however, the spread is more than 25% even after 20 KTy exposure and assuming $theta_{12} < pi/4$, as dictated by the solar data. We show that with a KamLAND like reactor ``SPMIN experiment at a distance of $sim$ 60 km, the spread of $sin^2theta_{12}$ could be reduced to about 5% at $3sigma$ level while $Delta m_{21}^2$ could be determined to within 4%, with just 3 KTy exposure.
165 - H.L. Ge , C. Giunti , Q.Y. Liu 2009
We present the results of a Bayesian analysis of solar and KamLAND neutrino data in the framework of three-neutrino mixing. We adopt two approaches for the prior probability distribution of the oscillation parameters Delta m^2_{21}, sin^2 theta_{12}, sin^2 theta_{13}: 1) a traditional flat uninformative prior; 2) an informative prior which describes the limits on sin^2 theta_{13} obtained in atmospheric and long-baseline accelerator and reactor neutrino experiments. In both approaches, we present the allowed regions in the sin^2 theta_{13} - Delta m^2_{21} and sin^2 theta_{12} - sin^2 theta_{13} planes, as well as the marginal posterior probability distribution of sin^2 theta_{13}. We confirm the 1.2 sigma hint of theta_{13} > 0 found in hep-ph/0806.2649 from the analysis of solar and KamLAND neutrino data. We found that the statistical significance of the hint is reduced to about 0.8 sigma by the constraints on sin^2 theta_{13} coming from atmospheric and long-baseline accelerator and reactor neutrino data, in agreement with arXiv:0808.2016.
156 - Fengpeng An , Guangpeng An , Qi An 2015
The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neut rinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter, sterile neutrinos, etc. We present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. By detecting reactor antineutrinos from two power plants at 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4 sigma significance with six years of running. The measurement of antineutrino spectrum will also lead to the precise determination of three out of the six oscillation parameters to an accuracy of better than 1%. Neutrino burst from a typical core-collapse supernova at 10 kpc would lead to ~5000 inverse-beta-decay events and ~2000 all-flavor neutrino-proton elastic scattering events in JUNO. Detection of DSNB would provide valuable information on the cosmic star-formation rate and the average core-collapsed neutrino energy spectrum. Geo-neutrinos can be detected in JUNO with a rate of ~400 events per year, significantly improving the statistics of existing geoneutrino samples. The JUNO detector is sensitive to several exotic searches, e.g. proton decay via the $pto K^++bar u$ decay channel. The JUNO detector will provide a unique facility to address many outstanding crucial questions in particle and astrophysics. It holds the great potential for further advancing our quest to understanding the fundamental properties of neutrinos, one of the building blocks of our Universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا