ﻻ يوجد ملخص باللغة العربية
We construct an expression for the Green function of a differential operator satisfying nonlocal, homogeneous boundary conditions starting from the fundamental solution of the differential operator. This also provides the solution to the boundary value problem of an inhomogeneous partial differential equation with inhomogeneous, nonlocal, and linear boundary conditions. The construction generally applies for all types of linear partial differential equations and linear boundary conditions.
In this paper we develop the global symbolic calculus of pseudo-differential operators generated by a boundary value problem for a given (not necessarily self-adjoint or elliptic) differential operator. For this, we also establish elements of a non-s
We study linear and quasilinear Venttsel boundary value problems involving elliptic operators with discontinuous coefficients. On the base of the a priori estimates obtained, maximal regularity and strong solvability in Sobolev spaces are proved.
This paper is concerned with boundary regularity estimates in the homogenization of elliptic equations with rapidly oscillating and high-contrast coefficients. We establish uniform nontangential-maximal-function estimates for the Dirichlet, regularit
In this paper, we consider a family of second-order elliptic systems subject to a periodically oscillating Robin boundary condition. We establish the qualitative homogenization theorem on any Lipschitz domains satisfying a non-resonance condition. We
We consider second-order elliptic equations with oblique derivative boundary conditions, defined on a family of bounded domains in $mathbb{C}$ that depend smoothly on a real parameter $lambda in [0,1]$. We derive the precise regularity of the solutio