ترغب بنشر مسار تعليمي؟ اضغط هنا

Green function solution of generalised boundary value problems

100   0   0.0 ( 0 )
 نشر من قبل Carsten Henkel
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct an expression for the Green function of a differential operator satisfying nonlocal, homogeneous boundary conditions starting from the fundamental solution of the differential operator. This also provides the solution to the boundary value problem of an inhomogeneous partial differential equation with inhomogeneous, nonlocal, and linear boundary conditions. The construction generally applies for all types of linear partial differential equations and linear boundary conditions.



قيم البحث

اقرأ أيضاً

In this paper we develop the global symbolic calculus of pseudo-differential operators generated by a boundary value problem for a given (not necessarily self-adjoint or elliptic) differential operator. For this, we also establish elements of a non-s elf-adjoint distribution theory and the corresponding biorthogonal Fourier analysis. We give applications of the developed analysis to obtain a-priori estimates for solutions of operators that are elliptic within the constructed calculus.
We study linear and quasilinear Venttsel boundary value problems involving elliptic operators with discontinuous coefficients. On the base of the a priori estimates obtained, maximal regularity and strong solvability in Sobolev spaces are proved.
84 - Zhongwei Shen 2021
This paper is concerned with boundary regularity estimates in the homogenization of elliptic equations with rapidly oscillating and high-contrast coefficients. We establish uniform nontangential-maximal-function estimates for the Dirichlet, regularit y, and Neumann problems with $L^2$ boundary data in a periodically perforated Lipschitz domain.
76 - Jun Geng , Jinping Zhuge 2019
In this paper, we consider a family of second-order elliptic systems subject to a periodically oscillating Robin boundary condition. We establish the qualitative homogenization theorem on any Lipschitz domains satisfying a non-resonance condition. We also use the quantitative estimates of oscillatory integrals to obtain the dimension-dependent convergence rates in $L^2$, assuming that the domain is smooth and strictly convex.
335 - Ziming Shi 2021
We consider second-order elliptic equations with oblique derivative boundary conditions, defined on a family of bounded domains in $mathbb{C}$ that depend smoothly on a real parameter $lambda in [0,1]$. We derive the precise regularity of the solutio ns in all variables, including the parameter $lambda$. More specifically we show that the solution and its derivatives are continuous in all variables, and the Holder norms of the space variables are bounded uniformly in $lambda$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا