ترغب بنشر مسار تعليمي؟ اضغط هنا

Diphoton production in vector-boson scattering at the LHC at next-to-leading order QCD

417   0   0.0 ( 0 )
 نشر من قبل Ivan Rosario
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we present results at next-to-leading order (NLO) QCD for photon pair production in association with two jets via vector boson scattering within the Standard Model (SM), and also in an effective field theory framework with anomalous gauge coupling effects via bosonic dimension-6 and 8 operators. We observe that, compared to other processes in the class of two electroweak (EW) vector boson production in association with two jets, more exclusive cuts are needed in order to suppress the SM QCD-induced background channel. As expected, the NLO QCD corrections reduce the scale uncertainties considerably. Using a well-motivated dynamical scale choice, we find moderate $K$-factors for the EW-induced process while the QCD-induced channel receives much larger corrections. Furthermore, we observe that applying a cut of $Delta phi_{j_2 gamma_1}^{text{cut}} < 2.5$ for the second hardest jet and the hardest photon helps to increase the signal significance and reduces the impact of higher-order QCD corrections.



قيم البحث

اقرأ أيضاً

Cross sections and differential distributions for ZA production in association with two jets via vector boson fusion are presented at next-to-leading order in QCD. The leptonic decays of the Z boson with full off-shell effects and spin correlations a re taken into account. The uncertainties due to different scale choices and pdf sets are studied. Furthermore, we analyze the effect of including anomalous quartic gauge couplings at NLO QCD.
Higgs boson production in association with a hard central photon and two forward tagging jets is expected to provide valuable information on Higgs boson couplings in a range where it is difficult to disentangle weak-boson fusion processes from large QCD backgrounds. We present next-to-leading order QCD corrections to Higgs production in association with a photon via weak-boson fusion at a hadron collider in the form of a flexible parton-level Monte Carlo program. The QCD corrections to integrated cross sections are found to be small for experimentally relevant selection cuts, while the shape of kinematic distributions can be distorted by up to 20% in some regions of phase space. Residual scale uncertainties at next-to-leading order are at the few-percent level.
The total cross section for Higgs production in bottom-quark annihilation is evaluated at next-to-next-to-leading order (NNLO) in QCD. This is the first time that all terms at order alpha_s^2 are taken into account. We find a greatly reduced scale de pendence with respect to lower order results, for both the factorization and the renormalization scales. The behavior of the result is consistent with earlier determinations of the appropriate factorization scale for this process of mu_F ~ M_H/4, and supports the validity of the bottom parton density approach for computing the total inclusive rate. We present precise predictions for the cross section at the Tevatron and the LHC.
168 - Terrance Figy 2008
We present the NLO QCD corrections for light Higgs pair production via vector boson fusion at the LHC within the CP conserving type II two higgs doublet model in the form of a fully flexible parton--level Monte Carlo program. Scale dependences on int egrated cross sections and distributions are reduced with QCD K-factors of order unity.
The production cross section for pseudo-scalar Higgs bosons at hadron colliders is computed at next-to-next-to-leading order (NNLO) in QCD. The pseudo-scalar Higgs is assumed to couple only to top quarks. The NNLO effects are evaluated using an effec tive lagrangian where the top quarks are integrated out. The NNLO corrections are similar in size to those found for scalar Higgs boson production.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا