ﻻ يوجد ملخص باللغة العربية
Depthwise convolution has gradually become an indispensable operation for modern efficient neural networks and larger kernel sizes ($ge5$) have been applied to it recently. In this paper, we propose a novel extremely separated convolutional block (XSepConv), which fuses spatially separable convolutions into depthwise convolution to further reduce both the computational cost and parameter size of large kernels. Furthermore, an extra $2times2$ depthwise convolution coupled with improved symmetric padding strategy is employed to compensate for the side effect brought by spatially separable convolutions. XSepConv is designed to be an efficient alternative to vanilla depthwise convolution with large kernel sizes. To verify this, we use XSepConv for the state-of-the-art architecture MobileNetV3-Small and carry out extensive experiments on four highly competitive benchmark datasets (CIFAR-10, CIFAR-100, SVHN and Tiny-ImageNet) to demonstrate that XSepConv can indeed strike a better trade-off between accuracy and efficiency.
The convolution operation is a powerful tool for feature extraction and plays a prominent role in the field of computer vision. However, when targeting the pixel-wise tasks like image fusion, it would not fully perceive the particularity of each pixe
In this paper, we propose a new multi-scale face detector having an extremely tiny number of parameters (EXTD),less than 0.1 million, as well as achieving comparable performance to deep heavy detectors. While existing multi-scale face detectors extra
Light-weight convolutional neural networks (CNNs) suffer performance degradation as their low computational budgets constrain both the depth (number of convolution layers) and the width (number of channels) of CNNs, resulting in limited representatio
We propose a new convolution called Dynamic Region-Aware Convolution (DRConv), which can automatically assign multiple filters to corresponding spatial regions where features have similar representation. In this way, DRConv outperforms standard convo
Deep convolutional neural networks (ConvNets) of 3-dimensional kernels allow joint modeling of spatiotemporal features. These networks have improved performance of video and volumetric image analysis, but have been limited in size due to the low memo