ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray scaling relations for a representative sample of Planck selected clusters observed with XMM-Newton

174   0   0.0 ( 0 )
 نشر من قبل Lorenzo Lovisari
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the scaling relations derived by fitting the X-ray parameters determined from analyzing the XMM-Newton observations of 120 galaxy clusters in the Planck Early Sunyaev-Zeldovich sample spanning the redshift range of 0.059$<$$z$$<$0.546. We find that the slopes of all the investigated scaling relations significantly deviate from the self-similar predictions, if self-similar redshift evolution is assumed. When the redshift evolution is left free to vary, the derived slopes are more in agreement with the self-similar predictions. Relaxed clusters have on average $sim$30$%$ higher X-ray luminosity than disturbed clusters at a given mass, a difference that, depending on the relative fraction of relaxed and disturbed clusters in the samples (e.g. SZ vs X-ray selected), have a strong impact in the normalization obtained in different studies. Using the core-excised cluster luminosities reduces the scatter and brings into better agreement the $L$-$M_{tot}$ and $L$-$T$ relations determined for different samples. $M_{tot}$-$T$, $M_{tot}$-$Y_X$, and $M_{tot}$-$M_{gas}$ relations show little dependence on the dynamical state of the clusters, but the normalizations of these relations may depend on the mass range investigated. Although most of the clusters investigated in this work reside at relatively low redshift, the fits prefer values of $gamma$, the parameter accounting for the redshift evolution, different from the self-similar predictions. This suggests an evolution ($<$2$sigma$ level, with the exception of the $M_{tot}$-$T$ relation) of the scaling relations. For the first time, we find significant evolution ($>$3$sigma$) of the $M_{tot}$-$T$ relation, pointing to an increase of the kinetic-to-thermal energy ratio with redshift. This is consistent with a scenario in which higher redshift clusters are on average more disturbed than their lower redshift counterparts.



قيم البحث

اقرأ أيضاً

We present measurements of the X-ray observables of the intra-cluster medium (ICM), including luminosity $L_X$, ICM mass $M_{ICM}$, emission-weighted mean temperature $T_X$, and integrated pressure $Y_X$, that are derived from XMM-Newton X-ray observ ations of a Sunyaev-Zeldovich Effect (SZE) selected sample of 59 galaxy clusters from the South Pole Telescope SPT-SZ survey that span the redshift range of $0.20 < z < 1.5$. We constrain the best-fit power law scaling relations between X-ray observables, redshift, and halo mass. The halo masses are estimated based on previously published SZE observable to mass scaling relations, calibrated using information that includes the halo mass function. Employing SZE-based masses in this sample enables us to constrain these scaling relations for massive galaxy clusters ($M_{500}geq 3 times10^{14}$ $M_odot$) to the highest redshifts where these clusters exist without concern for X-ray selection biases. We find that the mass trends are steeper than self-similarity in all cases, and with $geq 2.5{sigma}$ significance in the case of $L_X$ and $M_{ICM}$. The redshift trends are consistent with the self-similar expectation, but the uncertainties remain large. Core-included scaling relations tend to have steeper mass trends for $L_X$. There is no convincing evidence for a redshift-dependent mass trend in any observable. The constraints on the amplitudes of the fitted scaling relations are currently limited by the systematic uncertainties on the SZE-based halo masses, however the redshift and mass trends are limited by the X-ray sample size and the measurement uncertainties of the X-ray observables.
The largest uncertainty for cosmological studies using clusters of galaxies is introduced by our limited knowledge of the statistics of galaxy cluster structure, and of the scaling relations between observables and cluster mass. To improve on this si tuation we have started an XMM-Newton Large Programme for the in-depth study of a representative sample of 33 galaxy clusters, selected in the redshift range z=0.055 to 0.183 from the REFLEX Cluster Survey, having X-ray luminosities above 0.4 X 10^44 h_70^-2 erg s^-1 in the 0.1 - 2.4 keV band. This paper introduces the sample, compiles properties of the clusters, and provides detailed information on the sample selection function. We describe the selection of a nearby galaxy cluster sample that makes optimal use of the XMM-Newton field-of-view, and provides nearly homogeneous X-ray luminosity coverage for the full range from poor clusters to the most massive objects in the Universe. For the clusters in the sample, X-ray fluxes are derived and compared to the previously obtained fluxes from the ROSAT All-Sky Survey. We find that the fluxes and the flux errors have been reliably determined in the ROSAT All-Sky Survey analysis used for the REFLEX Survey. We use the sample selection function documented in detail in this paper to determine the X-ray luminosity function, and compare it with the luminosity function of the entire REFLEX sample. We also discuss morphological peculiarities of some of the sample members. The sample and some of the background data given in this introductory paper will be important for the application of these data in the detailed studies of cluster structure, to appear in forthcoming publications.
185 - Adam Mantz 2009
(Abridged) This is the second in a series of papers in which we derive simultaneous constraints on cosmology and X-ray scaling relations using observations of massive, X-ray flux-selected galaxy clusters. The data set consists of 238 clusters drawn f rom the ROSAT All-Sky Survey with 0.1-2.4 keV luminosities >2.5e44 erg/second, and incorporates extensive follow-up observations using the Chandra X-ray Observatory. Our analysis accounts self-consistently for all selection effects, covariances and systematic uncertainties. Here we describe the reduction of the follow-up X-ray observations, present results on the cluster scaling relations, and discuss their implications. Our constraints on the luminosity-mass and temperature-mass relations, measured within r_500, lead to three important results. First, the data support the conclusion that excess heating of the intracluster medium has altered its thermodynamic state from that expected in a simple, gravitationally dominated system; however, this excess heating is primarily limited to the central regions of clusters (r<0.15r_500). Second, the intrinsic scatter in the center-excised luminosity-mass relation is remarkably small, being undetected at the <10% level in current data; for the hot, massive clusters under investigation, this scatter is smaller than in either the temperature-mass or Y_X-mass relations (10-15%). Third, the evolution with redshift of the scaling relations is consistent with the predictions of simple, self-similar models of gravitational collapse, indicating that the mechanism responsible for heating the central regions of clusters was in operation before redshift 0.5 (the limit of our data) and that its effects on global cluster properties have not evolved strongly since then.
All-sky data from the Planck survey and the Meta-Catalogue of X-ray detected Clusters of galaxies (MCXC) are combined to investigate the relationship between the thermal Sunyaev-Zeldovich (SZ) signal and X-ray luminosity. The sample comprises ~ 1600 X-ray clusters with redshifts up to ~ 1 and spans a wide range in X-ray luminosity. The SZ signal is extracted for each object individually, and the statistical significance of the measurement is maximised by averaging the SZ signal in bins of X-ray luminosity, total mass, or redshift. The SZ signal is detected at very high significance over more than two decades in X-ray luminosity (10^43 erg/s < L_500 E(z)^-7/3 < 2 X 10^45 erg/s). The relation between intrinsic SZ signal and X-ray luminosity is investigated and the measured SZ signal is compared to values predicted from X-ray data. Planck measurements and X-ray based predictions are found to be in excellent agreement over the whole explored luminosity range. No significant deviation from standard evolution of the scaling relations is detected. For the first time the intrinsic scatter in the scaling relation between SZ signal and X-ray luminosity is measured and found to be consistent with the one in the luminosity -- mass relation from X-ray studies. There is no evidence of any deficit in SZ signal strength in Planck data relative to expectations from the X-ray properties of clusters, underlining the robustness and consistency of our overall view of intra-cluster medium properties.
(Abridged) We examine the X-ray luminosity scaling relations of 31 nearby galaxy clusters from the Representative XMM-Newton Cluster Structure Survey (REXCESS). The objects are selected in X-ray luminosity only, optimally sampling the cluster luminos ity function; temperatures range from 2 to 9 keV and there is no bias toward any particular morphological type. Pertinent values are extracted in an aperture corresponding to R_500, estimated using the tight correlation between Y_X and total mass. The data exhibit power law relations between bolometric X-ray luminosity and temperature, Y_X and total mass, all with slopes that are significantly steeper than self-similar expectations. We examine the causes for the steepening, finding that the primary driver appears to be a systematic variation of the gas content with mass. Scatter about the relations is dominated in all cases by the presence of cool cores. The natural logarithmic scatter about the raw X-ray luminosity-temperature relation is about 70%, and about the X-ray luminosity-Y_X relation it is 40%. Cool core and morphologically disturbed systems occupy distinct regions in the residual space with respect to the best fitting mean relation, the former lying systematically to the high luminosity side, the latter to the low luminosity side. Exclusion of the central regions serves to reduce the scatter by more than 50%. Using Y_X as a mass proxy, we derive a Malmquist bias corrected luminosity-mass relation and compare with previous determinations. Our results indicate that luminosity can be a reliable mass proxy with controllable scatter, which has important implications for upcoming all-sky cluster surveys, such as those to be undertaken with Planck and eROSITA, and ultimately for the use of clusters for cosmological purposes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا