ترغب بنشر مسار تعليمي؟ اضغط هنا

Inelastic electron tunneling in 2H-Ta$_x$Nb$_{1-x}$Se$_2$ evidenced by scanning tunneling spectroscopy

150   0   0.0 ( 0 )
 نشر من قبل Xingyuan Hou
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a detailed study of tunneling spectra measured on 2H-Ta$_x$Nb$_{1-x}$Se$_2$ ($x=0sim 0.1$) single crystals using a low-temperature scanning tunneling microscope. The prominent gap-like feature unintelligible for a long time was found to be accompanied by some in-gap fine structures. By investigating the second-derivative spectra and their temperature and magnetic field dependencies, we were able to prove that inelastic electron tunneling is the origin of these features and obtain the Eliashberg function of 2H-Ta$_x$Nb$_{1-x}$Se$_2$ at atomic scale, providing a potential way to study the local Eliashberg function and phonon spectra of the related transition-metal dichalcogenides.

قيم البحث

اقرأ أيضاً

We present an extension of the tunneling theory for scanning tunneling microcopy (STM) to include different types of vibrational-electronic couplings responsible for inelastic contributions to the tunnel current in the strong-coupling limit. It allow s for a better understanding of more complex scanning tunneling spectra of molecules on a metallic substrate in separating elastic and inelastic contributions. The starting point is the exact solution of the spectral functions for the electronic active local orbitals in the absence of the STM tip. This includes electron-phonon coupling in the coupled system comprising the molecule and the substrate to arbitrary order including the anti-adiabatic strong coupling regime as well as the Kondo effect on a free electron spin of the molecule. The tunneling current is derived in second order of the tunneling matrix element which is expanded in powers of the relevant vibrational displacements. We use the results of an ab-initio calculation for the single-particle electronic properties as an adapted material-specific input for a numerical renormalization group approach for accurately determining the electronic properties of a NTCDA molecule on Ag(111) as a challenging sample system for our theory. Our analysis shows that the mismatch between the ab-initio many-body calculation of the tunnel current in the absence of any electron-phonon coupling to the experiment scanning tunneling spectra can be resolved by including two mechanisms: (i) a strong unconventional Holstein term on the local substrate orbital leads to reduction of the Kondo temperature and (ii) a different electron-vibrational coupling to the tunneling matrix element is responsible for inelastic steps in the $dI/dV$ curve at finite frequencies.
We investigated SrFe$mathrm{_2}$(As$mathrm{_{1-x}}$P$mathrm{_x}$)$mathrm{_2}$ single crystals with four different phosphorus concentrations x in the superconducting phase (x = 0.35, 0.46) and in the magnetic phase (x = 0, 0.2). The superconducting sa mples display a V-shaped superconducting gap, which suggests nodal superconductivity. Furthermore we determined the superconducting coherence length by measuring the spatially resolved superconducting density of states (DOS). Using inelastic tunneling spectroscopy we investigated excitations in the samples with four different phosphorus concentrations. Inelastic peaks are related to bosonic modes. Phonon and non-phonon mechanism for the origin of these peaks are discussed.
Ion conducting materials are critical components of batteries, fuel cells, and devices such as memristive switches. Analytical tools are therefore sought that allow the behavior of ions in solids to be monitored and analyzed with high spatial resolut ion and in real time. In principle, inelastic tunneling spectroscopy offers these capabilities. However, as its spectral resolution is limited by thermal softening of the Fermi-Dirac distribution, tunneling spectroscopy is usually constrained to cryogenic temperatures. This constraint would seem to render tunneling spectroscopy useless for studying ions in motion. We report here the first inelastic tunneling spectroscopy studies above room temperature. For these measurements, we have developed high-temperature-stable tunnel junctions that incorporate within the tunnel barrier ultrathin layers for efficient proton conduction. By analyzing the vibrational modes of O-H bonds in BaZrO3-based heterostructures, we demonstrate the detection of protons with a spectral resolution of 20 meV at 400 K (FWHM). Overturning the hitherto existing prediction for the spectral resolution limit of 186 meV (5.4 kBT at 400 K), this resolution enables high-temperature tunneling spectroscopy of ion conductors. With these advances, inelastic tunneling spectroscopy constitutes a novel, valuable analytical tool for solid-state ionics.
We investigated the localized electronic properties of nanoporous gold films by using an ultra-high vacuum scanning tunneling microscope at low temperature (4.2 K). Second derivative scanning tunneling spectroscopy shows the plasmon peaks of the nano porous gold films, which are excited by inelastic tunneling electrons. We propose that the nanorod model is appropriate for nanoporous gold studies at the nanometer-scale. These results are supported by a 3D electron tomography analysis and theoretical calculations of nanoporous gold with ellipsoid shape.
CrBr$_{3}$ is a layered van der Waals material with magnetic ordering down to the 2D limit. For decades, based on optical measurements, it is believed that the energy gap of CrBr$_{3}$ is in the range of 1.68-2.1 eV. However, controversial results ha ve indicated that the band gap of CrBr$_{3}$ is possibly smaller than that. An unambiguous determination of the energy gap is critical to the correct interpretations of the experimental results of CrBr$_{3}$. Here, we present the scanning tunneling microscopy and spectroscopy (STM/S) results of CrBr$_{3}$ thin and thick flakes exfoliated onto pyropytic graphite (HOPG) surfaces and density functional theory (DFT) calculations to reveal the small energy gap (peak-to-peak energy gap to be 0.57 eV $pm$ 0.04 eV; or the onset signal energy gap to be 0.29 $pm$ 0.05 eV from dI/dV spectra). Atomic resolution topography images show the defect-free crystal structure and the dI/dV spectra exhibit multiple peak features measured at 77 K. The conduction band - valence band peak pairs in the multi-peak dI/dV spectrum agree very well with all reported optical transitions. STM topography images of mono- and bi-layer CrBr$_{3}$ flakes exhibit edge degradation due to short air exposure (~15 min) during sample transfer. The unambiguously determined small energy gap settles the controversy and is the key in better understanding CrBr$_{3}$ and similar materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا