ترغب بنشر مسار تعليمي؟ اضغط هنا

Tetragonal mixed system $Cs_2CuCl_{4-x}Br_x$ complemented by the tetragonal phase realisation of $Cs_2CuCl_4$

44   0   0.0 ( 0 )
 نشر من قبل Natalija van Well
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Realisation of the tetragonal phase of $Cs_2CuCl_4$ is possible using specific crystal growth conditions at a temperature below $281K$. This work deals with the comparison of the magnetic susceptibility and the magnetization of this new tetragonal compound with the magnetic behaviour of tetragonal $Cs_2CuCl_{2.9}Br_{1.1}$, $Cs_2CuCl_{2.5}Br_{1.5}$, $Cs_2CuCl_{2.2}Br_{1.8}$ and presents consistent results for such quasi $2-D$ antiferromagnets. Structural investigation at low temperature for $Cs_2CuCl_{2.2}Br_{1.8}$ shows no phase transition. The structure remains in the tetragonal symmetry $I4/mmm$. Furthermore, several magnetic reflections corresponding to the propagation vector $k = (0, 0, 0)$ are observed for this tetragonal compound through neutron diffraction experiments below the magnetic phase transition at $T_N = 11.3K$ confirming its antiferromagnetic nature.



قيم البحث

اقرأ أيضاً

Temperature dependent measurements of 57Fe Mossbauer spectra on CaFe2As2 single crystals in the tetragonal and collapsed tetragonal phases are reported. Clear features in the temperature dependencies of the isomer shift, relative spectra area and qua drupole splitting are observed at the transition from the tetragonal to the collapsed tetragonal phase. From the temperature dependent isomer shift and spectral area data, an average stiffening of the phonon modes in the collapsed tetragonal phase is inferred. The quadrupole splitting increases by ~25% on cooling from room temperature to ~100 K in the tetragonal phase and is only weakly temperature dependent at low temperatures in the collapsed tetragonal phase, in agreement with the anisotropic thermal expansion in this material. In order to gain microscopic insight about these measurements we perform ab initio density functional theory calculations of the electric field gradient and the electron density of CaFe2As2 in both phases. By comparing the experimental data with the calculations we are able to fully characterize the crystal structure of the samples in the collapsed-tetragonal phase through determination of the As z-coordinate. Based on the obtained temperature dependent structural data we are able to propose charge saturation of the Fe - As bond region as the mechanism behind the stabilization of the collapsed-tetragonal phase at ambient pressure.
Magnetic interactions are generally believed to play a key role in mediating electron pairing for superconductivity in iron arsenides; yet their character is only partially understood. Experimentally, the antiferromagnetic (AF) transition is always p receded by or coincident with a tetragonal to orthorhombic structural distortion. Although it has been suggested that this lattice distortion is driven by an electronic nematic phase, where a spontaneously generated electronic liquid crystal state breaks the C4 rotational symmetry of the paramagnetic state, experimental evidence for electronic anisotropy has been either in the low-temperature orthorhombic phase or the tetragonal phase under uniaxial pressure that breaks this symmetry. Here we use inelastic neutron scattering to demonstrate the presence of a large in-plane spin anisotropy above TN in the unstressed tetragonal phase of BaFe2As2. In the low-temperature orthorhombic phase, we find highly anisotropic spin waves with a large damping along the AF a-axis direction. On warming the system to the paramagnetic tetragonal phase, the low-energy spin waves evolve into quasi-elastic excitations, while the anisotropic spin excitations near the zone boundary persist. These results strongly suggest that the spin nematicity we find in the tetragonal phase of BaFe2As2 is the source of the electronic and orbital anisotropy observed above TN by other probes, and has profound consequences for the physics of these materials.
We present high-energy x-ray diffraction data under applied pressures up to p = 29 GPa, neutron diffraction measurements up to p = 1.1 GPa, and electrical resistance measurements up to p = 5.9 GPa, on SrCo2As2. Our x-ray diffraction data demonstrate that there is a first-order transition between the tetragonal (T) and collapsed-tetragonal (cT) phases, with an onset above approximately 6 GPa at T = 7 K. The pressure for the onset of the cT phase and the range of coexistence between the T and cT phases appears to be nearly temperature independent. The compressibility along the a-axis is the same for the T and cT phases whereas, along the c-axis, the cT phase is significantly stiffer, which may be due to the formation of an As-As bond in the cT phase. Our resistivity measurements found no evidence of superconductivity in SrCo2As2 for p <= 5.9 GPa and T >= 1.8 K. The resistivity data also show signatures consistent with a pressure-induced phase transition for p >= 5.5 GPa. Single-crystal neutron diffraction measurements performed up to 1.1 GPa in the T phase found no evidence of stripe-type or A-type antiferromagnetic ordering down to 10 K. Spin-polarized total-energy calculations demonstrate that the cT phase is the stable phase at high pressure with a c/a ratio of 2.54. Furthermore, these calculations indicate that the cT phase of SrCo2As2 should manifest either A-type antiferromagnetic or ferromagnetic order.
Monoclinic CuO is anomalous both structurally as well as electronically in the 3$d$ transition metal oxide series. All the others have the cubic rock salt structure. Here we report the synthesis and electronic property determination of a tetragonal ( elongated rock salt) form of CuO created using an epitaxial thin film deposition approach. In situ photoelectron spectroscopy suggests an enhanced charge transfer gap $Delta$ with the overall bonding more ionic. As an end member of the 3d transition monoxides, its magnetic properties should be that of a high $T_N$ antiferromagnet.
Recent studies have demonstrated the potential of antiferromagnets as the active component in spintronic devices. This is in contrast to their current passive role as pinning layers in hard disk read heads and magnetic memories. Here we report the ep itaxial growth of a new high-temperature antiferromagnetic material, tetragonal CuMnAs, which exhibits excellent crystal quality, chemical order and compatibility with existing semiconductor technologies. We demonstrate its growth on the III-V semiconductors GaAs and GaP, and show that the structure is also lattice matched to Si. Neutron diffraction shows collinear antiferromagnetic order with a high Neel temperature. Combined with our demonstration of room-temperature exchange coupling in a CuMnAs/Fe bilayer, we conclude that tetragonal CuMnAs films are suitable candidate materials for antiferromagnetic spintronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا