ﻻ يوجد ملخص باللغة العربية
Realisation of the tetragonal phase of $Cs_2CuCl_4$ is possible using specific crystal growth conditions at a temperature below $281K$. This work deals with the comparison of the magnetic susceptibility and the magnetization of this new tetragonal compound with the magnetic behaviour of tetragonal $Cs_2CuCl_{2.9}Br_{1.1}$, $Cs_2CuCl_{2.5}Br_{1.5}$, $Cs_2CuCl_{2.2}Br_{1.8}$ and presents consistent results for such quasi $2-D$ antiferromagnets. Structural investigation at low temperature for $Cs_2CuCl_{2.2}Br_{1.8}$ shows no phase transition. The structure remains in the tetragonal symmetry $I4/mmm$. Furthermore, several magnetic reflections corresponding to the propagation vector $k = (0, 0, 0)$ are observed for this tetragonal compound through neutron diffraction experiments below the magnetic phase transition at $T_N = 11.3K$ confirming its antiferromagnetic nature.
Temperature dependent measurements of 57Fe Mossbauer spectra on CaFe2As2 single crystals in the tetragonal and collapsed tetragonal phases are reported. Clear features in the temperature dependencies of the isomer shift, relative spectra area and qua
Magnetic interactions are generally believed to play a key role in mediating electron pairing for superconductivity in iron arsenides; yet their character is only partially understood. Experimentally, the antiferromagnetic (AF) transition is always p
We present high-energy x-ray diffraction data under applied pressures up to p = 29 GPa, neutron diffraction measurements up to p = 1.1 GPa, and electrical resistance measurements up to p = 5.9 GPa, on SrCo2As2. Our x-ray diffraction data demonstrate
Monoclinic CuO is anomalous both structurally as well as electronically in the 3$d$ transition metal oxide series. All the others have the cubic rock salt structure. Here we report the synthesis and electronic property determination of a tetragonal (
Recent studies have demonstrated the potential of antiferromagnets as the active component in spintronic devices. This is in contrast to their current passive role as pinning layers in hard disk read heads and magnetic memories. Here we report the ep