ﻻ يوجد ملخص باللغة العربية
We predict that Bessel-like beams of arbitrary integer order can exhibit a tunable self-similar behavior (that take an invariant form under suitable stretching transformations). Specifically, by engineering the amplitude and the phase on the input plane in real space, we show that it is possible to generate higher-order vortex Bessel-like beams with fully controllable radius of the hollow core and maximum intensity during propagation. In addition, using a similar approach, we show that it is also possible to generate zeroth order Bessel-like beams with controllable beam width and maximum intensity. Our numerical results are in excellent agreement with our theoretical predictions.
We propose and experimentally demonstrate a novel interferometric approach to generate arbitrary cylindrical vector beams on the higher order Poincare sphere. Our scheme is implemented by collinear superposition of two orthogonal circular polarizatio
Collapse of a Gaussian beam in self-focusing Kerr media arrested by nonlinear losses may lead to the spontaneous formation of a quasi-stationary nonlinear unbalanced Bessel beam with finite energy, which can propagate without significant distortion o
We propose that the full Poincar{e} beam with any polarization geometries can be pictorially described by the hybrid-order Poincar{e} sphere whose eigenstates are defined as a fundamental-mode Gaussian beam and a Laguerre-Gauss beam. A robust and eff
A promising alternative to Gaussian beams for use in strong field science is Bessel-Gauss (BG or Bessel-like) laser beams as they are easily produced with readily available optics and provide more flexibility of the spot size and working distances. H
A unified description of the free-space cylindrical vector beams is presented, which is an integral transformation solution to the vector Helmholtz equation and the transversality condition. The amplitude 2-form of the angular spectrum involved in th