ﻻ يوجد ملخص باللغة العربية
We prove some refinements of concentration compactness principle for Sobolev space $W^{1,n}$ on a smooth compact Riemannian manifold of dimension $n$. As an application, we extend Aubins theorem for functions on $mathbb{S}^{n}$ with zero first order moments of the area element to higher order moments case. Our arguments are very flexible and can be easily modified for functions satisfying various boundary conditions or belonging to higher order Sobolev spaces.
A new characterization of CMO(R^n) is established by the local mean oscillation. Some characterizations of iterated compact commutators on weighted Lebesgue spaces are given, which are new even in the unweighted setting for the first order commutators.
We prove a nonlinear regularity principle in sequence spaces which produces universal estimates for special series defined therein. Some consequences are obtained and, in particular, we establish new inclusion theorems for multiple summing operators.
In this paper, we study the extremal problem for the Strichartz inequality for the Schr{o}dinger equation on $mathbb{R}^2$. We show that the solutions to the associated Euler-Lagrange equation are exponentially decaying in the Fourier space and thus
We prove a sharp Lieb-Thirring type inequality for Jacobi matrices, thereby settling a conjecture of Hundertmark and Simon. An interesting feature of the proof is that it employs a technique originally used by Hundertmark-Laptev-Weidl concerning sums of singular values for compact operators.
We consider the SIR model and study the first time the number of infected individuals begins to decrease and the first time this population is below a given threshold. We interpret these times as functions of the initial susceptible and infected popu