ﻻ يوجد ملخص باللغة العربية
The Kepler Asteroseismic Legacy Project provided frequencies, separation ratios, error estimates, and covariance matrices for 66 Kepler main sequence targets. Most of the previous analysis of these data was focused on fitting standard stellar models. We present results of direct asteroseismic
Stellar structure and evolution can be studied in great detail by asteroseismic methods, provided data of high precision are available. We determine the effective temperature (Teff), surface gravity (log g), metallicity, and the projected rotational
We present a new, better-constrained asteroseismic analysis of the helium-atmosphere (DB) white dwarf discovered in the field of view of the original Kepler mission. Observations obtained over the course of two years yield at least seven independent
Binary star systems are important for understanding stellar structure and evolution, and are especially useful when oscillations can be detected and analysed with asteroseismology. However, only four systems are known in which solar-like oscillations
Asteroseismic modelling of the internal structure of main-sequence stars born with a convective core has so far been based on homogeneous analyses of space photometric Kepler light curves of 4 years duration, to which most often incomplete inhomogene
We present the ground-based activities within the different working groups of the Kepler Asteroseismic Science Consortium (KASC). The activities aim at the systematic characterization of the 5000+ KASC targets, and at the collection of ground-based f