ﻻ يوجد ملخص باللغة العربية
The output of gravitational-wave interferometers, such as LIGO and Virgo, can be highly non-stationary. Broadband detector noise can affect the detector sensitivity on the order of tens of seconds. Gravitational-wave transient searches, such as those for colliding black holes, estimate this noise in order to identify gravitational-wave events. During times of non-stationarity we see a higher rate of false events being reported. To accurately separate signal from noise, it is imperative to incorporate the changing detector state into gravitational-wave searches. We develop a new statistic which estimates the variation of the interferometric detector noise. We use this statistic to re-rank candidate events identified during LIGO-Virgos second observing run by the PyCBC search pipeline. This results in a 5% improvement in the sensitivity volume for low mass binaries, particularly binary neutron stars mergers.
An up-to-date catalog of nearby galaxies considered as hosts of binary compact objects is provided with complete information about sky position, distance, extinction-corrected blue luminosity and error estimates. With our current understanding of bin
Rapid detection of compact binary coalescence (CBC) with a network of advanced gravitational-wave detectors will offer a unique opportunity for multi-messenger astronomy. Prompt detection alerts for the astronomical community might make it possible t
Einstein Telescope (ET) is a possible third generation ground-based gravitational wave observatory for which a design study is currently being carried out. A brief (and non-exhaustive) overview is given of ETs projected capabilities regarding astroph
We describe the PyCBC search for gravitational waves from compact-object binary coalescences in advanced gravitational-wave detector data. The search was used in the first Advanced LIGO observing run and unambiguously identified two black hole binary
We estimate binary compact object merger detection rates for LIGO, including the binaries formed in ellipticals long ago. Specifically, we convolve hundreds of model realizations of elliptical- and spiral-galaxy population syntheses with a model for