ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantitative evaluation of laser-induced fluorescence in magnetized plasma accounting for disalignment effect

156   0   0.0 ( 0 )
 نشر من قبل Roman Bergert
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantitative evaluation of tunable diode laser induced fluorescence (TDLIF) measurements in magnetized plasma take into account Zeeman splitting of energetic levels and intra-multiplet mixing defining the density distribution (alignment) of excited $mathrm{2p_8}$ multiplet is discussed in this paper. TDLIF measurements were used to evaluate light-transport properties in a strongly magnetized optically thick argon plasma under different pressure conditions. Therefore, a coupled system of rate balance equations were constructed to describe laser pumping of individual magnetic sub-levels of $mathrm{2p_8}$ state through frequency separated sub-transitions originating from $mathrm{1s_4}$ magnetic sub-levels. The density distribution of $mathrm{2p_8}$ multiplet was described by balancing laser pumping with losses including radiative decay, transfer of excitation between the neighboring multiplets driven by neutral collisions and quenching due to electron and neutral collisions. Resulting $mathrm{2p_8}$ magnetic sub-level densities were then used to model polarization dependent fluorescence, consider self-absorption, which could be directly compared with measured polarization resolved TDLIF measurements. This enables to obtain unique solutions for the $mathrm{1s_4}$ and $mathrm{1s_5}$ magnetic sub-level densities which were in good agreement with the densities obtained by laser absorption measurements. It is shown that LIF measurements in magnetized plasma conditions have strong pressure dependence that should be corrected consider effective disalignment rate. The presented measurement method and model can help further understanding and improve description of optical emission of argon in magnetized conditions.

قيم البحث

اقرأ أيضاً

We consider backscattering of laser pulses in strongly-magnetized plasma mediated by kinetic magnetohydrodynamic waves. Magnetized low-frequency scattering, which can occur when the external magnetic field is neither perpendicular nor parallel to the laser propagation direction, provides an instability growth rate higher than Raman scattering and a frequency downshift comparable to Brillouin scattering. In addition to the high growth rate, which allows smaller plasmas, and the 0.1-2% frequency downshift, which permits a wide range of pump sources, MLF scattering is an ideal candidate for amplification because the process supports an extremely large bandwidth, which particle-in-cell simulations show produces ultrashort durations. Under some conditions, MLF scattering also becomes the dominant spontaneous backscatter instability, with implications for magnetized laser-confinement experiments.
Propagation and scattering of lasers present new phenomena and applications when the plasma medium becomes strongly magnetized. With mega-Gauss magnetic fields, scattering of optical lasers already becomes manifestly anisotropic. Special angles exist where coherent laser scattering is either enhanced or suppressed, as we demonstrate using a cold-fluid model. Consequently, by aiming laser beams at special angles, one may be able to optimize laser-plasma coupling in magnetized implosion experiments. In addition, magnetized scattering can be exploited to improve the performance of plasma-based laser pulse amplifiers. Using the magnetic field as an extra control variable, it is possible to produce optical pulses of higher intensity, as well as compress UV and soft x-ray pulses beyond the reach of other methods. In even stronger giga-Gauss magnetic fields, laser-plasma interactions begin to enter the relativistic-quantum regime. Using quantum electrodynamics, we compute modified wave dispersion relation, which enables correct interpretation of Faraday rotation measurements of strong magnetic fields.
The sheath formation in a weakly magnetized collisionless electronegative plasma consisting of electrons, negative and positive ions has been numerically investigated using the hydrodynamic equations. The electrons and negative ions are assumed to fo llow Boltzmann relation. A sheath formation criterion has been analytically derived. The paper focuses on studying the sheath structure by varying the electronegativity. It has been observed that the presence of negative ions has a substantial effect on the sheath structure. The observations made in the present work have profound significance on processing plasmas, especially in the semiconductor industry as well as in fusion studies.
Laser-induced breakdown spectroscopy (LIBS) show enhancement in its signal, when the laser-induced plasma is confined/decelerated under the effect of an external steady magnetic field or in a small cavity. An enhancement in LIBS signal has been obser ved ~2 times in the case of magnetic confinement. Combination of magnetic and spatial confinement provide enhancement by an order of magnitude. Theoretical analysis of the decelerated plasma has been found in agreement with the experimental observations. The enhancement in LIBS signal is found dependent on the efficiency of plasma confinement as well as on the time duration of laser. The saturation in LIBS signal at higher laser intensity is found correlated with electron-ion collision frequency as well as on the dynamics and instability of plasma plume. Possibility of further enhancement in emission has also been discussed.
We conduct a multiparametric study of driven magnetic reconnection relevant to recent experiments on colliding magnetized laser produced plasmas using particle-in-cell simulations. Varying the background plasma density, plasma resistivity, and plasma bubble geometry, the 2D simulations demonstrate a rich variety of reconnection behavior and show the coupling between magnetic reconnection and the global hydrodynamical evolution of the system. We consider both the collision between two radially expanding bubbles where reconnection is seeded by the pre-existing X-point, and the collision between two flows in a quasi-1D geometry with initially anti-parallel fields where reconnection must be initiated by the tearing instability. In both geometries, at a baseline case of low-collisionality and low background density, the current sheet is strongly compressed to below scale of the ion-skin-depth scale, and rapid, multi-plasmoid reconnection results. Increasing the plasma resistivity, we observe a collisional slow-down of reconnection and stabilization of plasmoid instability for Lundquist numbers less than approximately $S sim 10^3$. Secondly, increasing the background plasma density modifies the compressibility of the plasma and can also slow-down or even prevent reconnection, even in completely collisionless regimes, by preventing the current sheet from thinning down to the scale of the ion-skin depth. These results have implications for understanding recent and future experiments, and signatures for these processes for proton-radiography diagnostics of these experiments are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا