ترغب بنشر مسار تعليمي؟ اضغط هنا

Artificial neural networks for nonlinear pulse shaping in optical fibers

334   0   0.0 ( 0 )
 نشر من قبل Christophe Finot
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Sonia Boscolo




اسأل ChatGPT حول البحث

We use a supervised machine-learning model based on a neural network to predict the temporal and spectral intensity profiles of the pulses that form upon nonlinear propagation in optical fibers with both normal and anomalous second-order dispersion. We also show that the model is able to retrieve the parameters of the nonlinear propagation from the pulses observed at the output of the fiber. Various initial pulse shapes as well as initially chirped pulses are investigated.

قيم البحث

اقرأ أيضاً

We develop a model for the description of nonlinear pulse propagation in multimode optical fibers with a parabolic refractive index profile. It consists in a 1+1D generalized nonlinear Schrodinger equation with a periodic nonlinear coefficient, which can be solved in an extremely fast and efficient way. The model is able to quantitatively reproduce recently observed phenomena like geometric parametric instability and broadband dispersive wave emission. We envisage that our equation will represent a valuable tool for the study of spatiotemporal nonlinear dynamics in the growing field of multimode fiber optics.
70 - M. Ossiander 2021
Transparent materials do not absorb light but have profound influence on the phase evolution of transmitted radiation. One consequence is chromatic dispersion, i.e., light of different frequencies travels at different velocities, causing ultrashort l aser pulses to elongate in time while propagating. Here we experimentally demonstrate ultrathin nanostructured coatings that resolve this challenge: we tailor the dispersion of silicon nanopillar arrays such that they temporally reshape pulses upon transmission using slow light effects and act as ultrashort laser pulse compressors. The coatings induce anomalous group delay dispersion in the visible to near-infrared spectral region around 800 nm wavelength over an 80 nm bandwidth. We characterize the arrays performance in the spectral domain via white light interferometry and directly demonstrate the temporal compression of femtosecond laser pulses. Applying these coatings to conventional optics renders them ultrashort pulse compatible and suitable for a wide range of applications.
We show that the velocity and thus the frequency of a signal pulse can be adjusted by the use of a control Airy pulse. In particular, we utilize a nonlinear Airy pulse which, via cross-phase modulation, creates an effective potential for the optical signal. Interestingly, during the interaction, the signal dispersion is suppressed. Importantly, the whole process is controllable and by using Airy pulses with different truncations leads to predetermined values of the frequency shifting. Such a functionality might be useful in wavelength division multiplexing networks.
347 - Wen Xiong , Chia Wei Hsu , Hui Cao 2018
Long-range speckle correlations play an essential role in wave transport through disordered media, but have rarely been studied in other complex systems. Here we discover spatio-temporal intensity correlations for an optical pulse propagating through a multimode fiber with strong random mode coupling. Positive long-range correlations arise from multiple scattering in fiber mode space and depend on the statistical distribution of arrival times. By optimizing the incident wavefront of a pulse, we maximize the power transmitted at a selected time, and such control is significantly enhanced by the long-range spatio-temporal correlations. We provide an explicit relation between the correlations and the enhancements, which closely agrees with experimental data. Our work shows that multimode fibers provide a fertile ground for studying complex wave phenomena, and the strong spatio-temporal correlations can be employed for efficient power delivery at a well-defined time.
The characterization of the complex spatiotemporal dynamics of optical beam propagation in nonlinear multimode fibers requires the development of advanced measurement methods, capable of capturing the real-time evolution of beam images. We present a new space-time mapping technique, permitting the direct detection, with picosecond temporal resolution, of the intensity from repetitive laser pulses over a grid of spatial samples from a magnified image of the output beam. By using this time-resolved mapping, we provide the first unambiguous experimental observation of instantaneous intrapulse nonlinear coupling processes among the modes of a graded index fiber.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا