ﻻ يوجد ملخص باللغة العربية
This work relates to three problems, the classification of maximal Abelian subalgebras (MASAs) of the Lie algebra of square matrices, the classification of 2-step solvable Frobenius Lie algebras and the Gerstenhabers Theorem. Let M and N be two commuting square matrices of order n with entries in an algebraically closed field K. Then the associative commutative K-algebra, they generate, is of dimension at most n. This result was proved by Murray Gerstenhaber in 1961. The analog of this property for three commuting matrices is still an open problem, its version for a higher number of commuting matrices is not true in general. In the present paper, we give a sufficient condition for this property to be satisfied, for any number of commuting matrices and arbitrary field K. Such a result is derived from a discussion on the structure of 2-step solvable Frobenius Lie algebras and a complete characterization of their associated left symmetric algebra structure. We discuss the classification of 2-step solvable Frobenius Lie algebras and show that it is equivalent to that of n-dimensional MASAs of the Lie algebra of square matrices, admitting an open orbit for the contragradient action associated to the multiplication of matrices and vectors. Numerous examples are discussed in any dimension and a complete classification list is supplied in low dimensions. Furthermore, in any finite dimension, we give a full classification of all 2-step solvable Frobenius Lie algebras corresponding to nonderogatory matrices.
Based on the differential graded Lie algebra controlling deformations of an $n$-Lie algebra with a representation (called an n-LieRep pair), we construct a Lie n-algebra, whose Maurer-Cartan elements characterize relative Rota-Baxter operators on n-L
In this paper, first we introduce the notion of a twisted Rota-Baxter operator on a 3-Lie algebra $g$ with a representation on $V$. We show that a twisted Rota-Baxter operator induces a 3-Lie algebra structure on $V$, which represents on $g$. By this
In this paper, we introduce the definition of generalized BiHom-Lie algebras and generalized BiHom-Lie admissible algebras in the category ${}_H{mathcal M}$ of left modules for any quasitriangular Hopf algebra $(H, R) $. Also, we describe the BiHom
We initiate a study on a range of new generalized derivations of finite-dimensional Lie algebras over an algebraically closed field of characteristic zero. This new generalization of derivations has an analogue in the theory of associative prime ring
In this paper, first we introduce the notion of a twilled 3-Lie algebra, and construct an $L_infty$-algebra, whose Maurer-Cartan elements give rise to new twilled 3-Lie algebras by twisting. In particular, we recover the Lie $3$-algebra whose Maurer-