ترغب بنشر مسار تعليمي؟ اضغط هنا

Ancestral lines under recombination

95   0   0.0 ( 0 )
 نشر من قبل Ellen Baake
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Solving the recombination equation has been a long-standing challenge of emph{deterministic} population genetics. We review recent progress obtained by introducing ancestral processes, as traditionally used in the context of emph{stochastic} models of population genetics, into the deterministic setting. With the help of an ancestral partitioning process, which is obtained by letting population size tend to infinity (without rescaling parameters or time) in an ancestral recombination graph, we obtain the solution to the recombination equation in a transparent form.

قيم البحث

اقرأ أيضاً

The recent explosion of genomic data has underscored the need for interpretable and comprehensive analyses that can capture complex phylogenetic relationships within and across species. Recombination, reassortment and horizontal gene transfer constit ute examples of pervasive biological phenomena that cannot be captured by tree-like representations. Starting from hundreds of genomes, we are interested in the reconstruction of potential evolutionary histories leading to the observed data. Ancestral recombination graphs represent potential histories that explicitly accommodate recombination and mutation events across orthologous genomes. However, they are computationally costly to reconstruct, usually being infeasible for more than few tens of genomes. Recently, Topological Data Analysis (TDA) methods have been proposed as robust and scalable methods that can capture the genetic scale and frequency of recombination. We build upon previous TDA developments for detecting and quantifying recombination, and present a novel framework that can be applied to hundreds of genomes and can be interpreted in terms of minimal histories of mutation and recombination events, quantifying the scales and identifying the genomic locations of recombinations. We implement this framework in a software package, called TARGet, and apply it to several examples, including small migration between different populations, human recombination, and horizontal evolution in finches inhabiting the Galapagos Islands.
The dynamics of a population undergoing selection is a central topic in evolutionary biology. This question is particularly intriguing in the case where selective forces act in opposing directions at two population scales. For example, a fast-replica ting virus strain outcompetes slower-replicating strains at the within-host scale. However, if the fast-replicating strain causes host morbidity and is less frequently transmitted, it can be outcompeted by slower-replicating strains at the between-host scale. Here we consider a stochastic ball-and-urn process which models this type of phenomenon. We prove the weak convergence of this process under two natural scalings. The first scaling leads to a deterministic nonlinear integro-partial differential equation on the interval $[0,1]$ with dependence on a single parameter, $lambda$. We show that the fixed points of this differential equation are Beta distributions and that their stability depends on $lambda$ and the behavior of the initial data around $1$. The second scaling leads to a measure-valued Fleming-Viot process, an infinite dimensional stochastic process that is frequently associated with a population genetics.
Recently, the selection-recombination equation with a single selected site and an arbitrary number of neutral sites was solved by means of the ancestral selection-recombination graph. Here, we introduce a more accessible approach, namely the ancestra l initiation graph. The construction is based on a discretisation of the selection-recombination equation. We apply our method to systematically explain a long-standing observation concerning the dynamics of linkage disequilibrium between two neutral loci hitchhiking along with a selected one. In particular, this clarifies the nontrivial dependence on the position of the selected site.
We review recent progress on ancestral processes related to mutation-selection models, both in the deterministic and the stochastic setting. We mainly rely on two concepts, namely, the killed ancestral selection graph and the pruned lookdown ancestra l selection graph. The killed ancestral selection graph gives a representation of the type of a random individual from a stationary population, based upon the individuals potential ancestry back until the mutations that define the individuals type. The pruned lookdown ancestral selection graph allows one to trace the ancestry of individuals from a stationary distribution back into the distant past, thus leading to the stationary distribution of ancestral types. We illustrate the results by applying them to a prototype model for the error threshold phenomenon.
$Lambda$-Wright--Fisher processes provide a robust framework to describe the type-frequency evolution of an infinite neutral population. We add a polynomial drift to the corresponding stochastic differential equation to incorporate frequency-dependen t selection. A decomposition of the drift allows us to approximate the solution of the stochastic differential equation by a sequence of Moran models. The genealogical structure underlying the Moran model leads in the large population limit to a generalisation of the ancestral selection graph of Krone and Neuhauser. Building on this object, we construct a continuous-time Markov chain and relate it to the forward process via a new form of duality, which we call Bernstein duality. We adapt classical methods based on the moment duality to determine the time to absorption and criteria for the accessibility of the boundaries; this extends a recent result by Gonzalez Casanova and Span`o. An intriguing feature of the construction is that the same forward process is compatible with multiple backward models. In this context we introduce suitable notions for minimality among the ancestral processes and characterise the corresponding parameter sets. In this way we recover classic ancestral structures as minimal ones.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا