ترغب بنشر مسار تعليمي؟ اضغط هنا

High-precision $Q$-value measurement confirms the potential of $^{135}$Cs for antineutrino-mass detection

74   0   0.0 ( 0 )
 نشر من قبل Antoine de Roubin
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف A. de Roubin




اسأل ChatGPT حول البحث

The ground-state-to-ground-state $beta$-decay $Q$-value of $^{135}textrm{Cs}(7/2^+)to,^{135}textrm{Ba}(3/2^+)$ was directly measured for the first time utilizing the Phase-Imaging Ion-Cyclotron Resonance (PI-ICR) technique at the JYFLTRAP Penning-trap setup. It is the first direct determination of this $Q$-value and its value of 268.66(30),keV is a factor of three more precise than the currently adopted $Q$-value in the Atomic Mass Evaluation 2016. Moreover, the $Q$-value deduced from the $beta$-decay endpoint energy has been found to deviate from our result by approximately 6 standard deviations. The measurement confirms that the first-forbidden unique $beta^-$-decay transition $^{135}textrm{Cs}(7/2^+)to,^{135}textrm{Ba}(11/2^-)$ is a candidate for antineutrino-mass measurements with an ultra-low $Q$-value of $0.44(31)$ keV. This $Q$-value is almost an order of magnitude smaller than in any presently running or planned direct (anti)neutrino-mass experiment.



قيم البحث

اقرأ أيضاً

We report a direct measurement of the Q-value of the neutrinoless double-beta-decay candidate 48Ca at the TITAN Penning-trap mass spectrometer, with the result that Q = 4267.98(32) keV. We measured the masses of both the mother and daughter nuclides, and in the latter case found a 1 keV deviation from the literature value. In addition to the Q-value, we also present results of a new calculation of the neutrinoless double-beta-decay nuclear matrix element of 48Ca. Using diagrammatic many-body perturbation theory to second order to account for physics outside the valence space, we constructed an effective shell-model double-beta-decay operator, which increased the nuclear matrix element by about 75% compared with that produced by the bare operator. The new Q-value and matrix element strengthen the case for a 48Ca double-beta-decay experiment.
The absolute mass value of $^{168}$Yb has been directly determined with the JYFLTRAP Penning trap mass spectrometer at the Ion Guide Isotope Separator On-Line (IGISOL) facility. A more precise value of the mass of $^{168}$Yb is needed to extract poss ible signatures of beyond standard model physics from high-precision isotope shift measurements of Yb atomic transition frequencies. The measured mass-excess value, ME($^{168}$Yb) = $-$61579.846(94) keV, is 12 times more precise and deviates from the Atomic Mass Evaluation 2016 value by 1.7$sigma$. The impact on precision isotope shift studies of the stable Yb isotopes is discussed.
We report a new, high-precision measurement of the proton elastic form factor ratio mu_p G_E/G_M for the four-momentum transfer squared Q^2 = 0.3-0.7 (GeV/c)^2. The measurement was performed at Jefferson Lab (JLab) in Hall A using recoil polarimetry. With a total uncertainty of approximately 1%, the new data clearly show that the deviation of the ratio mu_p G_E/G_M from unity observed in previous polarization measurements at high Q^2 continues down to the lowest Q^2 value of this measurement. The updated global fit that includes the new results yields an electric (magnetic) form factor roughly 2% smaller (1% larger) than the previous global fit in this Q^2 range. We obtain new extractions of the proton electric and magnetic radii, which are <r^2_E>^(1/2)=0.875+/-0.010 fm and <r^2_M>^(1/2)=0.867+/-0.020 fm. The charge radius is consistent with other recent extractions based on the electron-proton interaction, including the atomic hydrogen Lamb shift measurements, which suggests a missing correction in the comparison of measurements of the proton charge radius using electron probes and the recent extraction from the muonic hydrogen Lamb shift.
We report the mass measurement of $^{56}$Cu, using the LEBIT 9.4T Penning trap mass spectrometer at the National Superconducting Cyclotron Laboratory at Michigan State University. The mass of $^{56}$Cu is critical for constraining the reaction rates of the $^{55}$Ni(p,$gamma$)$^{56}$Cu(p,$gamma$)$^{57}$Zn($beta^+$)$^{57}$Cu bypass around the $^{56}$Ni waiting point. Previous recommended mass excess values have disagreed by several hundred keV. Our new value, ME=$-38 626.7(6.4)$ keV, is a factor of 30 more precise than the suggested value from the 2012 atomic mass evaluation [Chin. Phys. C {bf{36}}, 1603 (2012)], and more than a factor of 12 more precise than values calculated using local mass extrapolations, while agreeing with the newest 2016 atomic mass evaluation value [Chin. Phys. C {bf{41}}, 030003 (2017)]. The new experimental average was used to calculate the astrophysical $^{55}$Ni(p,$gamma$) and $^{57}$Zn($gamma$,p) reaction rates and perform reaction network calculations of the rp-process. These show that the rp-process flow redirects around the $^{56}$Ni waiting point through the $^{55}$Ni(p,$gamma$) route, allowing it to proceed to higher masses more quickly and resulting in a reduction in ashes around this waiting point and an enhancement to higher-mass ashes.
95 - Y. Ito , P. Schury , M. Wada 2013
A multi-reflection time-of-flight mass spectrograph, competitive with Penning trap mass spectrometers, has been built at RIKEN. We have performed a first online mass measurement, using 8Li+ (T1/2 = 838 ms). A new analysis method has been realized, wi th which, using only 12C+ references, the mass excess of 8Li was accurately determined to be 20947.6(15)(34) keV (dm/m = 6.6 x 10-7). The speed, precision and accuracy of this first online measurement exemplifies the potential for using this new type of mass spectrograph for precision measurements of short-lived nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا