ﻻ يوجد ملخص باللغة العربية
The VSTOXX index tracks the expected 30-day volatility of the EURO STOXX 50 equity index. Futures on the VSTOXX index can, therefore, be used to hedge against economic uncertainty. We investigate the effect of trader inventory on the price of VSTOXX futures through a combination of stochastic processes and machine learning methods. We formulate a simple and efficient pricing methodology for VSTOXX futures, which assumes a Heston-type stochastic process for the underlying EURO STOXX 50 market. Under these dynamics, approximate analytical formulas for the implied volatility smile and the VSTOXX index have recently been derived. We use the EURO STOXX 50 option implied volatilities and the VSTOXX index value to estimate the parameters of this Heston model. Following the calibration, we calculate theoretical VSTOXX future prices and compare them to the actual market prices. While theoretical and market prices are usually in line, we also observe time periods, during which the market price does not agree with our Heston model. We collect a variety of market features that could potentially explain the price deviations and calibrate two machine learning models to the price difference: a regularized linear model and a random forest. We find that both models indicate a strong influence of accumulated trader positions on the VSTOXX futures price.
In the past, financial stock markets have been studied with previous generations of multi-agent systems (MAS) that relied on zero-intelligence agents, and often the necessity to implement so-called noise traders to sub-optimally emulate price formati
Traders in a stock market exchange stock shares and form a stock trading network. Trades at different positions of the stock trading network may contain different information. We construct stock trading networks based on the limit order book data and
This review presents the set of electricity price models proposed in the literature since the opening of power markets. We focus on price models applied to financial pricing and risk management. We classify these models according to their ability to
Executing a basket of co-integrated assets is an important task facing investors. Here, we show how to do this accounting for the informational advantage gained from assets within and outside the basket, as well as for the permanent price impact of m
We consider a model in which a trader aims to maximize expected risk-adjusted profit while trading a single security. In our model, each price change is a linear combination of observed factors, impact resulting from the traders current and prior act