ترغب بنشر مسار تعليمي؟ اضغط هنا

Differentiating Population Spatial Behavior using Representative Features of Geospatial Mobility (ReFGeM)

206   0   0.0 ( 0 )
 نشر من قبل Rui Zhang
 تاريخ النشر 2020
والبحث باللغة English
 تأليف Rui Zhang




اسأل ChatGPT حول البحث

Understanding how humans use and consume space by comparing stratified groups, either through observation or controlled study, is key to designing better spaces, cities, and policies. GPS data traces provide detailed movement patterns of individuals but can be difficult to interpret due to the scale and scope of the data collected. For actionable insights, GPS traces are usually reduced to one or more features which express the spatial phenomenon of interest. However, it is not always clear which spatial features should be employed, and substantial effort can be invested into designing features which may or may not provide insight. In this paper we present an alternative approach: a standardized feature set with actionable interpretations that can be efficiently run against many datasets. We show that these features can distinguish between disparate human mobility patterns, although no single feature can distinguish them alone.



قيم البحث

اقرأ أيضاً

We investigate gender homophily in the spatial proximity of children (6 to 12 years old) in a French primary school, using time-resolved data on face-to-face proximity recorded by means of wearable sensors. For strong ties, i.e., for pairs of childre n who interact more than a defined threshold, we find statistical evidence of gender preference that increases with grade. For weak ties, conversely, gender homophily is negatively correlated with grade for girls, and positively correlated with grade for boys. This different evolution with grade of weak and strong ties exposes a contrasted picture of gender homophily.
The identification of urban mobility patterns is very important for predicting and controlling spatial events. In this study, we analyzed millions of geographical check-ins crawled from a leading Chinese location-based social networking service (Jiep ang.com), which contains demographic information that facilitates group-specific studies. We determined the distinct mobility patterns of natives and non-natives in all five large cities that we considered. We used a mixed method to assign different algorithms to natives and non-natives, which greatly improved the accuracy of location prediction compared with the basic algorithms. We also propose so-called indigenization coefficients to quantify the extent to which an individual behaves like a native, which depends only on their check-in behavior, rather than requiring demographic information. Surprisingly, the hybrid algorithm weighted using the indigenization coefficients outperformed a mixed algorithm that used additional demographic information, suggesting the advantage of behavioral data in characterizing individual mobility compared with the demographic information. The present location prediction algorithms can find applications in urban planning, traffic forecasting, mobile recommendation, and so on.
In recent years, we have seen scientists attempt to model and explain human dynamics and, in particular, human movement. Many aspects of our complex life are affected by human movements such as disease spread and epidemics modeling, city planning, wi reless network development, and disaster relief, to name a few. Given the myriad of applications it is clear that a complete understanding of how people move in space can lead to huge benefits to our society. In most of the recent works, scientists have focused on the idea that people movements are biased towards frequently-visited locations. According to them, human movement is based on an exploration/exploitation dichotomy in which individuals choose new locations (exploration) or return to frequently-visited locations (exploitation). In this work, we focus on the concept of recency. We propose a model in which exploitation in human movement also considers recently-visited locations and not solely frequently-visited locations. We test our hypothesis against different empirical data of human mobility and show that our proposed model is able to better explain the human trajectories in these datasets.
The analysis and characterization of human mobility using population-level mobility models is important for numerous applications, ranging from the estimation of commuter flows in cities to modeling trade flows between countries. However, almost all of these applications have focused on large spatial scales, which typically range between intra-city scales to inter-country scales. In this paper, we investigate population-level human mobility models on a much smaller spatial scale by using them to estimate customer mobility flow between supermarket zones. We use anonymized, ordered customer-basket data to infer empirical mobility flow in supermarkets, and we apply variants of the gravity and intervening-opportunities models to fit this mobility flow and estimate the flow on unseen data. We find that a doubly-constrained gravity model and an extended radiation model (which is a type of intervening-opportunities model) can successfully estimate 65--70% of the flow inside supermarkets. Using a gravity model as a case study, we then investigate how to reduce congestion in supermarkets using mobility models. We model each supermarket zone as a queue, and we use a gravity model to identify store layouts with low congestion, which we measure either by the maximum number of visits to a zone or by the total mean queue size. We then use a simulated-annealing algorithm to find store layouts with lower congestion than a supermarkets original layout. In these optimized store layouts, we find that popular zones are often in the perimeter of a store. Our research gives insight both into how customers move in supermarkets and into how retailers can arrange stores to reduce congestion. It also provides a case study of human mobility on small spatial scales.
Accurate modelling of local population movement patterns is a core contemporary concern for urban policymakers, affecting both the short term deployment of public transport resources and the longer term planning of transport infrastructure. Yet, whil e macro-level population movement models (such as the gravity and radiation models) are well developed, micro-level alternatives are in much shorter supply, with most macro-models known to perform badly in smaller geographic confines. In this paper we take a first step to remedying this deficit, by leveraging two novel datasets to analyse where and why macro-level models of human mobility break down at small scales. In particular, we use an anonymised aggregate dataset from a major mobility app and combine this with freely available data from OpenStreetMap concerning land-use composition of different areas around the county of Oxfordshire in the United Kingdom. We show where different models fail, and make the case for a new modelling strategy which moves beyond rough heuristics such as distance and population size towards a detailed, granular understanding of the opportunities presented in different areas of the city.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا