ترغب بنشر مسار تعليمي؟ اضغط هنا

Statistical study of magnetosheath jet-driven bow waves

62   0   0.0 ( 0 )
 نشر من قبل Terry Liu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

When a magnetosheath jet (localized dynamic pressure enhancements) compresses ambient magnetosheath at a (relative) speed faster than the local magnetosonic speed, a bow wave or shock can form ahead of the jet. Such bow waves or shocks were recently observed to accelerate particles, thus contributing to magnetosheath heating and particle acceleration in the extended environment of Earth bow shock. To further understand the characteristics of jet-driven bow waves, we perform a statistical study to examine which solar wind conditions favor their formation and whether it is common for them to accelerate particles. We identified 364 out of 2859 (13%) magnetosheath jets to have a bow wave or shock ahead of them with Mach number typically larger than 1.1. We show that large solar wind plasma beta, weak interplanetary magnetic field (IMF) strength, large solar wind Alfven Mach number, and strong solar wind dynamic pressure present favorable conditions for their formation. We also show that magnetosheath jets with bow waves or shocks are more frequently associated with higher maximum ion and electron energies than those without them, confirming that it is common for these structures to accelerate particles. In particular, magnetosheath jets with bow waves have electron energy flux enhanced on average by a factor of 2 compared to both those without bow waves and the ambient magnetosheath. Our study implies that magnetosheath jets can contribute to shock acceleration of particles especially for high Mach number shocks. Therefore, shock models should be generalized to include magnetosheath jets and concomitant particle acceleration.

قيم البحث

اقرأ أيضاً

Magnetosheath jets are localized fast flows with enhanced dynamic pressure. When they supermagnetosonically compress the ambient magnetosheath plasma, a bow wave or shock can form ahead of them. Such a bow wave was recently observed to accelerate ion s and possibly electrons. The ion acceleration process was previously analyzed, but the electron acceleration process remains largely unexplored. Here we use multi-point observations by Time History of Events and Macroscale during Substorms from three events to determine whether and how magnetosheath jet-driven bow waves can accelerate electrons. We show that when suprathermal electrons in the ambient magnetosheath convect towards a bow wave, some electrons are shock-drift accelerated and reflected towards the ambient magnetosheath and others continue moving downstream of the bow wave resulting in bi-directional motion. Our study indicates that magnetosheath jet-driven bow waves can result in additional energization of suprathermal electrons in the magnetosheath. It implies that magnetosheath jets can increase the efficiency of electron acceleration at planetary bow shocks or other similar astrophysical environments.
In the present paper, we investigate the power-law behaviour of the magnetic field spectra in the Earths magnetosheath region using Cluster spacecraft data under solar minimum condition. The power spectral density of the magnetic field data and spect ral slopes at various frequencies are analysed. Propagation angle and compressibility are used to test the nature of turbulent fluctuations. The magnetic field spectra have the spectral slopes between -1.5 to 0 down to spatial scales of 20 ion gyroradius and show clear evidence of a transition to steeper spectra for small scales with a second power-law, having slopes between -2.6 to -1.8. At low frequencies, f_sc<0.3f_ci(where f_ci is ion gyro-frequency), propagation angle approximately 90 degrees to the mean magnetic field, B_0, and compressibility shows a broad distribution, 0.1 < R > 0.9. On the other hand at f_sc>10f_ci, the propagation angle exhibits a broad range between 30-90 degree while R has a small variation: 0.2 < R > 0.5. We conjecture that at high frequencies, the perpendicularly propagating Alfven waves could partly explain the statistical analysis of spectra. To support our prediction of kinetic Alfven wave-dominated spectral slope behaviour at high frequency, we also present a theoretical model and simulate the magnetic field turbulence spectra due to the nonlinear evolution of kinetic Alfven waves. The present study also shows the analogy between the observational and simulated spectra.
Magnetic reconnection (MR) and the associated concurrently occurring waves have been extensively studied at large-scale plasma boundaries, in quasi-symmetric and asymmetric configurations in the terrestrial magnetotail and at the magnetopause. Recent high-resolution observations by MMS (Magnetospheric Multiscale) spacecraft indicate that MR can occur also in the magnetosheath where the conditions are highly turbulent when the upstream shock geometry is quasi-parallel. The strong turbulent motions make the boundary conditions for evolving MR complicated. In this paper it is demonstrated that the wave observations in localized regions of MR can serve as an additional diagnostic tool reinforcing our capacity for identifying MR events in turbulent plasmas. It is shown that in a close resemblance with MR at large-scale boundaries, turbulent reconnection associated whistler waves occur at separatrix/outflow regions and at the outer boundary of the electron diffusion region, while lower hybrid drift waves are associated with density gradients during the crossing of the current sheet. The lower hybrid drift instability can make the density inhomogeneities rippled. The identification of MR associated waves in the magnetosheath represents also an important milestone for developing a better understanding of energy redistribution and dissipation in turbulent plasmas.
The recently released spacecraft potential measured by the RPW instrument on-board Solar Orbiter has been used to estimate the solar wind electron density in the inner heliosphere. Solar-wind electron density measured during June 2020 has been analys ed to obtain a thorough characterization of the turbulence and intermittency properties of the fluctuations. Magnetic field data have been used to describe the presence of ion-scale waves. Selected intervals have been extracted to study and quantify the properties of turbulence. The Empirical Mode Decomposition has been used to obtain the generalized marginal Hilbert spectrum, equivalent to the structure functions analysis, and additionally reducing issues typical of non-stationary, short time series. The presence of waves was quantitatively determined introducing a parameter describing the time-dependent, frequency-filtered wave power. A well defined inertial range with power-law scaling has been found almost everywhere. However, the Kolmogorov scaling and the typical intermittency effects are only present in part of the samples. Other intervals have shallower spectra and more irregular intermittency, not described by models of turbulence. These are observed predominantly during intervals of enhanced ion frequency wave activity. Comparisons with compressible magnetic field intermittency (from the MAG instrument) and with an estimate of the solar wind velocity (using electric and magnetic field) are also provided to give general context and help determine the cause for the anomalous fluctuations.
We present a statistical analysis of more than two thousand bipolar electrostatic solitary waves (ESW) collected from ten quasi-perpendicular Earths bow shock crossings by Magnetospheric Multiscale spacecraft. We developed and implemented a correctio n procedure for reconstruction of actual electric fields, velocities, and other properties of ESW from measurements, whose spatial scales are typically comparable with or smaller than spatial distance between voltage-sensitive probes. We determined the optimal ratio between frequency response factors of axial and spin plane antennas to be around 1.65/1.8. We found that more than 95% of the ESW in the Earths bow shock are of negative polarity and present an in depth analysis of properties of these ESW. They have spatial scales of about 10--100 m that is within a range of $lambda_{D}$ to $10lambda_{D}$, amplitudes typically below a few Volts that is below 0.1 of local electron temperature, and velocities below a few hundreds km/s in spacecraft and plasma rest frames that is on the order of local ion-acoustic speed. The spatial scales of ESW are distinctly correlated with local Debye length $lambda_{D}$. ESW with amplitudes of 5--30 V or 0.1--0.3 Te have the occurrence rate of a few percent. The ESW have electric fields generally oblique to local magnetic field and propagate highly oblique to shock normal ${bf N}$; more than 80% of ESW propagate within 30$^{circ}$ of the shock plane. In the shock plane, ESW typically propagate within a few tens of degrees of local magnetic field projection ${bf B}_{rm LM}$ onto the shock plane and preferentially opposite to ${bf N}times {bf B}_{rm LM}$. We argue that the ESW of negative polarity are ion phase space holes produced in a nonlinear stage of ion-ion ion-streaming instabilities. We estimated lifetimes of the ion holes to be 10--100 ms, or 1--10 km in terms of spatial distance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا