ترغب بنشر مسار تعليمي؟ اضغط هنا

Blockchain using Proof-of-Interaction

198   0   0.0 ( 0 )
 نشر من قبل Quentin Bramas
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper we define a new Puzzle called Proof-of-Interaction and we show how it can replace, in the Bitcoin protocol, the Proof-of-Work algorithm.

قيم البحث

اقرأ أيضاً

91 - Runhua Xu , Chao Li , James Joshi 2021
Increasingly, information systems rely on computational, storage, and network resources deployed in third-party facilities or are supported by service providers. Such an approach further exacerbates cybersecurity concerns constantly raised by numerou s incidents of security and privacy attacks resulting in data leakage and identity theft, among others. These have in turn forced the creation of stricter security and privacy related regulations and have eroded the trust in cyberspace. In particular, security related services and infrastructures such as Certificate Authorities (CAs) that provide digital certificate service and Third-Party Authorities (TPAs) that provide cryptographic key services, are critical components for establishing trust in Internet enabled applications and services. To address such trust issues, various transparency frameworks and approaches have been recently proposed in the literature. In this paper, we propose a Transparent and Trustworthy TPA using Blockchain (T3AB) to provide transparency and accountability to the trusted third-party entities, such as honest-but-curious third-party IaaS servers, and coordinators in various privacy-preserving machine learning (PPML) approaches. T3AB employs the Ethereum blockchain as the underlying public ledger and also includes a novel smart contract to automate accountability with an incentive mechanism that motivates participants to participate in auditing, and punishes unintentional or malicious behaviors. We implement T3AB, and show through experimental evaluation in the Ethereum official test network, Rinkeby, that the framework is efficient. We also formally show the security guarantee provided by T3AB, and analyze the privacy guarantee and trustworthiness it provides.
Automated and industrial Internet of Things (IoT) devices are increasing daily. As the number of IoT devices grows, the volume of data generated by them will also grow. Managing these rapidly expanding IoT devices and enormous data efficiently to be available to all authorized users without compromising its integrity will become essential in the near future. On the other side, many information security incidents have been recorded, increasing the requirement for countermeasures. While safeguards against hostile third parties have been commonplace until now, operators and parties have seen an increase in demand for data falsification detection and blocking. Blockchain technology is well-known for its privacy, immutability, and decentralized nature. Single-board computers are becoming more powerful while also becoming more affordable as IoT platforms. These single-board computers are gaining traction in the automation industry. This study focuses on a paradigm of IoT-Blockchain integration where the blockchain node runs autonomously on the IoT platform itself. It enables the system to conduct machine-to-machine transactions without the intervention of a person and to exert direct access control over IoT devices. This paper assumed that the readers are familiar with Hyperledger Fabric basic operations and focus on the practical approach of integration. A basic introduction is provided for the newbie on the blockchain.
-Wireless body area network(WBAN) has shown great potential in improving healthcare quality not only for patients but also for medical staff. However, security and privacy are still an important issue in WBANs especially in multi-hop architectures. I n this paper, we propose and present the design and the evaluation of a secure lightweight and energy efficient authentication scheme BANZKP based on an efficient cryptographic protocol, Zero Knowledge Proof (ZKP) and a commitment scheme. ZKP is used to confirm the identify of the sensor nodes, with small computational requirement, which is favorable for body sensors given their limited resources, while the commitment scheme is used to deal with replay attacks and hence the injection attacks by committing a message and revealing the key later. Our scheme reduces the memory requirement by 56.13 % compared to TinyZKP [13], the comparable alternative so far for Body Area Networks, and uses 10 % less energy.
146 - Hiroshi Watanabe 2018
In the Internet-of-Things, the number of connected devices is expected to be extremely huge, i.e., more than a couple of ten billion. It is however well-known that the security for the Internet-of-Things is still open problem. In particular, it is di fficult to certify the identification of connected devices and to prevent the illegal spoofing. It is because the conventional security technologies have advanced for mainly protecting logical network and not for physical network like the Internet-of-Things. In order to protect the Internet-of-Things with advanced security technologies, we propose a new concept (datachain layer) which is a well-designed combination of physical chip identification and blockchain. With a proposed solution of the physical chip identification, the physical addresses of connected devices are uniquely connected to the logical addresses to be protected by blockchain.
75 - Lorenzo Ghiro 2021
The use of the term blockchain is documented for disparate projects, from cryptocurrencies to applications for the Internet of Things (IoT), and many more. The concept of blockchain appears therefore blurred, as it is hard to believe that the same te chnology can empower applications that have extremely different requirements and exhibit dissimilar performance and security. This position paper elaborates on the theory of distributed systems to advance a clear definition of blockchain that allows us to clarify its role in the IoT. This definition inextricably binds together three elements that, as a whole, provide the blockchain with those unique features that distinguish it from other distributed ledger technologies: immutability, transparency and anonimity. We note however that immutability comes at the expense of remarkable resource consumption, transparency demands no confidentiality and anonymity prevents user identification and registration. This is in stark contrast to the requirements of most IoT applications that are made up of resource constrained devices, whose data need to be kept confidential and users to be clearly known. Building on the proposed definition, we derive new guidelines for selecting the proper distributed ledger technology depending on application requirements and trust models, identifying common pitfalls leading to improper applications of the blockchain. We finally indicate a feasible role of the blockchain for the IoT: myriads of local, IoT transactions can be aggregated off-chain and then be successfully recorded on an external blockchain as a means of public accountability when required.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا