ﻻ يوجد ملخص باللغة العربية
We give two proofs of a level-rank duality for braided fusion categories obtained from quantum groups of type $C$ at roots of unity. The first proof uses conformal embeddings, while the second uses a classification of braided fusion categories associated with quantum groups of type $C$ at roots of unity. In addition we give a similar result for non-unitary braided fusion categories quantum groups of types $B$ and $C$ at odd roots of unity.
We consider the finite generation property for cohomology of a finite tensor category C, which requires that the self-extension algebra of the unit Ext*_C(1,1) is a finitely generated algebra and that, for each object V in C, the graded extension gro
We classify finite pointed braided tensor categories admitting a fiber functor in terms of bilinear forms on symmetric Yetter-Drinfeld modules over abelian groups. We describe the groupoid formed by braided equivalences of such categories in terms of
The trace (or zeroth Hochschild homology) of Khovanovs Heisenberg category is identified with a quotient of the algebra W_{1+infty}. This induces an action of W_{1+infty} on symmetric functions.
We show that braidings on a fusion category $mathcal{C}$ correspond to certain fusion subcategories of the center of $mathcal{C}$ transversal to the canonical Lagrangian algebra. This allows to classify braidings on non-degenerate and group-theoretical fusion categories.
We classify braided tensor categories over C of exponential growth which are quasisymmetric, i.e., the squared braiding is the identity on the product of any two simple objects. This generalizes the classification results of Deligne on symmetric cate